
UNB

Query Compilation based Distributed
Morsel-driven Parallel Spatial Query

Processing
Rahul Sahni, Xiaozheng Zhang, Sudip Chatterjee, Suprio Ray

University of New Brunswick, Fredericton

Compiler-Driven Performance Workshop @ CASCON, 2024

UNB Outline

• Motivation

• Background

• Our approach

• Evaluation

• Conclusions

2

UNB Motivation

3

§ Spatial Data is increasing at a rapid rate.

[2]

[3]
[4]

[1] https://www.flaticon.com/free-icon
[2] https://oceanservice.noaa.gov/facts/remotesensing.html
[3] https://globalocean.noaa.gov/research/argo-program/
[4] https://www.picketa.com/

[1]

§ Map based app – Google Maps

§ Geo-Social app - Facebook
§ Ocean data – Argo Data
§ Remote sensing data
§ Agriculture Tech – Picketa Systems

UNB Motivation

4

§ RDBMS are popular, partly due to SQL.

§ RDBMS follow Volcano Model for query execution.

§ Main focus was to minimize disk I/O and CPU
utilization was less important, bottleneck on modern
CPUs

§ “To go 10X faster, the engine must execute 90% fewer
instructions and yet still get the work done. To go 100X
faster, it must execute 99% fewer instructions” -
Hekaton

UNB Motivation

5

§ Query Compilation based query processing, offers
significant benefits but complicated to incorporate.

§ PostgreSQL supports just-in-time (JIT) query
compilation for tuple materialization and
expression evaluation only.

§ Query compilation for spatial workload could add
more complexities. LB-2 Spatial proposed a
generative query compilation approach but only
support MBR based spatial query execution and is
based on single node.

UNB Outline
• Motivation

• Background

• Our approach

• Evaluation

• Conclusions

6

UNB Models of Query Execution

7

• Pull-Based Query Execution
– Volcano/Iterator model

• Push-Based Query Execution

UNB Pull-Based Model

8

• Tuple-at-a-time
• Each operator implements a common interface:
– open()
– next()
– close()

UNB Sample query - Pull-Based

Logical plan

A.d

A.a = B.b

A

B

p

A.c = 35
s

⋈

if (child.next())
emit(child.next())

if (left.next())
t1 = left.next()
buildHashtable(t1);

else if (right.next()) {
t2 = right.next()
t1 = probeHashtable(t2)
if (t1)

emit(t1, t2)
}

If (recordFile.next())
emit(recordFile.next())

if (child.next())
t = child.next()
if (predicate.satisfy(t))

emit(t)
}

A

B

A.dp

A.c = 35s

A.a = B.b⋈

If (recordFile.next())
emit(recordFile.next())

UNB Pull-Based Model - limitations

10

• Millions of virtual function calls

• Control flow constantly changes between operators

• Generated code can be too big with many conditions and
branches

• Branch prediction and cache locality suffer

• Solution?
– Push-Based Model

UNB Push-Based Model

11

• Each operator has two interfaces:
– produce(): asks the operator to produce tuples and push it up
– consume(): accepts the tuples and pushes further up

• The functions are not really called
– they only exist conceptually during code generation

consume consume consume consume

ResultAggregationTableScan Selection

produce produce produce

CodeGen
Module

produce

UNB Push-Based Model

• Operator boundaries are
determined by conceptual
“pipelines”
• Instead of iterating, we

push up the pipeline

• Within a pipeline, a tight
loops performs a number
of operations

• Data is taken out at a
pipeline breaker and
materialized into the next

A

A.c = 35s B

A.dp

A.a = B.b⋈

Pipeline P2

Pipeline P1

UNB Sample query - Push-Based

for t in A:
if (t.c == 35)

materialize t in Hashtable HT

for t2 in B:
t1 = probeHashtable(HT, t2)
if (t1)

emit(t1.d)

A

B

A.dp

A.c = 35s

A.a = B.b⋈

Pipeline P2

Pipeline P1

P1

P2

UNB Query Compilation – Using Push-based Model

14

• No virtual functions calls

• Better data locality – “real code inlining”
– Operators act upon data in CPU registers

• Operator fusion

• Code specialization

• Compiler optimizations, like loop unrolling and loop-
invariant code motion

UNB Spatial Data

15

• Data representing location, shape, relationship with
other object in a space

• Vector Data : points, lines and polygons

• Raster Data: grid data, with each grid represent some
value

UNB Spatial Data

16

UNB Spatial Functions

17

UNB Spatial Partitioning

18

• Dividing a spatial region
into sub-regions
(partitions/tiles)

• Efficiently organize and
process the data

* Image from Filipiak, Dominik & Węcel, Krzysztof & Stróżyna, Milena & Michalak, Michał & Abramowicz, Witold. (2020).
Extracting Maritime Traffic Networks from AIS Data Using Evolutionary Algorithm. Business & Information Systems
Engineering. 62. 10.1007/s12599-020-00661-0.

UNB Spatial Query Processing

19

Spatial Join: finds object pairs from two tables, which
satisfies a spatial predicate like ST_INTERSECTS

UNB Spatial Query Processing

20

§ Spatial Range Join: finds object pair where the objects are
within a defined radius of the other object (query object)
from the other table. ST_DWITHIN

UNB Spatial Query Processing

21

Spatial Distance Join: finds object pairs that satisfy a
particular distance unit. ST_DISTANCE

x > 5 && x < 10

x > 5 && x < 10

x > 5 && x < 10

UNB Outline

• Motivation

• Background

• Our system

• Evaluation

• Conclusions

22

UNB Our System - CasaDB

23

UNB Index Organization

24

UNB Morsel-driven Parallelism (MDP)

25

§ Parallelism by running the operator pipelines in parallel on
separate threads.

§ MDP divides data into small chunks called “morsels”.

§ MDP’s dispatcher spawns a fixed number of workers and
each of these workers is assigned a morsel.

§ MDP’s dispatcher provides dynamic task scheduling, load
balancing and parallelism.

UNB Morsel Driven Parallelism (MDP) for
Spatial Data

26

§ MDP works well for non-spatial workload.

§ For a tile-based Spatial workload
§ How to define morsel?
§ How to handle processing skew within morsels?

UNB Morsel Driven Parallelism (MDP) for
Spatial Data

27

§ Monolithic Tile-based Morsel Driven Parallelism (MTMP)

§ Granular Tile-based Morsel Driven Parallelism (GTMP)

UNB Monolithic Tile-based Morsel Driven
Parallelism (MTMP)

28

UNB Granular Tile-based Morsel Driven
Parallelism (GTMP)

29

UNB Spatial Join Processing - MTMP

30
30

Dispatcher
WorkerWorkerWorkerWorker

Ask Work

Work
With Morsels Predicate

Evaluation
Send result

Morsel Creation

UNB Spatial Join Processing - GTMP

31

Dispatcher
WorkerWorkerWorkerWorker

Ask Work

Work

With Granules
Filtering Phase

Send result

Granules Creation

Predicate Evaluation

UNB Outline

• Motivation

• Background

• Out System

• Evaluation

• Conclusions

32

UNB Experimental Setup

33

§ Cluster of 6 machines, Dual-Core AMD Opteron Processor
2222 clocked at 3 GHz and 16 GB main memory with
Ubuntu 16.06

§ Apache Sedona v1.4.0, Citus v12.1

UNB Experimental Setup - Dataset

34

TIGER Dataset
§ U.S. Census Bureau’s geographic spatial data
§ Contains spatial information about various geographic

features in the United State, such as roads, rivers,
railroads, boundaries, landmarks, and more

UNB Experimental Setup - Queries

35

TIGER
Queries

UNB Experimental Setup - Dataset

36

OSM UK Dataset
§ OpenStreetMap(OSM) is a free map data provided by the

website openstreetmap.org.
§ Contains spatial information about various geographic

features in the United Kingdome, such as roads, buildings,
waterways, water bodies, etc.

UNB Experimental Setup - Queries

37

OSM
Queries

UNB Code Generation Time

38

UNB Code Compilation Time

39

UNB GTMP vs MTMP

40

Performance analysis of GTMP vs MTMP – Conclusion

§ For most of the queries GTMP and MTMP performs similar

§ In case of skew GTMP performs better than MTMP

§ Spatial Range Join and Spatial Distance Join performs
better on GTMP than MTMP

UNB CasaDB vs Citus vs Apache Sedona
TIGER Dataset

41

UNB CasaDB vs Citus vs Apache Sedona
OSM Dataset

42

UNB CasaDB vs Citus vs Apache Sedona

43

§ CasaDB is 4x faster on average, than Citus and 308x faster
on an average, than Apache Sedona on TIGER dataset.

§ CasaDB is at least 7.3x faster on an average, than Sedona
and atmost 1.5x faster than Citus on OSM dataset.

UNB Outline

• Motivation

• Background

• Out System

• Evaluation

• Conclusions

44

UNB Conclusion

45

§ Presents a compilation-based distributed spatial query
processing engine for CasaDB.

§ Proposed two new morsel parallelism-based algorithms,
Monolithic Tile based Morsel Parallelism (MTMP) and
Granular Tile based Morsel Parallelism (GTMP).

§ Presented two Index organization techniques, Global
Index and Tile-based Index and how they can be used with
different kinds of spatial joins.

UNB Conclusion

46

§ CasaDB is 4x faster than Citus and 308x faster than
Apache Sedona on TIGER dataset, and on OSM dataset
CasaDB is almost 1.5x faster than Citus and 7.3x faster
than Apache Sedona.

UNB

Thanks!

47

UNB Query Processing

48

• What happens with SQL query?
– Goal: translate SQL query to an executable plan and run it
– Steps:

• Parsing and validation
• Optimization
• Execution

* Image from Abraham Silberschatz, Henry F. Korth, and S. Sudarshan, Database system
concepts, 6 ed., McGraw-Hill, New York, 2010.

UNB Query Processing - Sample query

QUERY:
SELECT A.d
FROM A, B
WHERE A.a = B.b

AND A.c = 35

TABLES:
A(a,c,d)
B(b,e,f)

Logical plan

A.d

A.a = B.b

A

B

p

A.c = 35
s

⋈

UNB Sample query - Push-Based

• Compiled code generated from SQL query

QUERY:
SELECT A.d
FROM A, B
WHERE A.a = B.b

AND A.c = 35

TABLES:
A(a,c,d)
B(b,e,f)

for t in A:
if (t.c == 35)

materialize t in Hashtable HT

for t2 in B:
t1 = probeHashtable(HT, t2)
if (t1)

emit(t1.d)

UNB PGAS

51

• Distributed-Shared Memory
– Easy programmability and data referencing (global address

space)
– Good performance and data locality (partitioning)

C1

M
1

C4C3C2

M
2

M
3

M
4

UNB PGAS

52

UNB UPC++

53

• Why UPC++-based Compiled Query Plans?
– UPC++ is a C++ library that supports PGAS

programming model

– All accesses made to remote memory are explicit

– All remote memory access operations are asynchronous

– Enable developers to write code that performs well at scale

– Minimal changes in the generated query plan code
• Scalable to hundreds of nodes

UNB GTMP vs MTMP

54

UNB GTMP vs MTMP

55

UNB GTMP vs MTMP

56

UNB GTMP vs MTMP

57

UNB Spatial Range Processing - MTMP

58

Dispatcher
WorkerWorkerWorkerWorker

Ask Work

Work

With Morsels

Send result

Morsel Creation

Filtering Phase
(Query window is
the morsel with

buffer)

Predicate Evaluation

UNB Spatial Range Processing - GTMP

59
59

Dispatcher
WorkerWorkerWorkerWorker

Ask Work

Work

With Granules

Send result

Filtering Phase
(Query window is
the granule with

buffer)

Predicate Evaluation

Granules Creation

UNB Spatial Distance Processing - MTMP

60

Dispatcher
WorkerWorkerWorkerWorker

Ask Work

Work

With Morsels

Send re
sult

Predicate EvaluationMorsel Creation

UNB Spatial Distance Processing - GTMP

61

Dispatcher
WorkerWorkerWorkerWorker

Ask Work

Work

With Morsels

Send result

Predicate EvaluationGranules Creation

UNB Sample query - Push-Based

Logical plan

A.d

A.a = B.b

A

B

p

A.c = 35
s

⋈

A

A.c = 35s B

A.dp

A.a = B.b⋈

Pipeline P2

Pipeline P1

