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Polyhedral model (1/2)

• The polyhedral model is a mathematical description for representing and

manipulating static control parts (SCoPs) of a program by using Presburger’s

arithmetic.

• A static control part (SCoP) is a maximal set of consecutive statements without

while loops, where loop bounds and conditionals may only depend on invariants

within this set of statements.

• Various libraries such as ISL, Polylib, Piplib, Omegalib implement the polyhedral

model’s underlying mathematical operations.

• The model provides an abstract representation of for-loop nests that enables us to

optimize them via different transformations, including: loop blocking (tiling), loop

parallelizing, …
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Polyhedral model (2/2)

The model is based on statement

instances in a for-loop nest.

It uses four main components to

represent the abstraction of a program:

1- iteration domain: integer

polyhedron of all iteration

instances

2- access relations: access relations

of iteration instances

3- schedule: the order of execution

4- dependency relations: read/write

dependencies.

for(i=0; i<2*N+5; i++){
for(j=0; j<i; j++)

S: A[i][j] = A[i][j-1]*2;
/* statement instances:
{<S,[0,0]>, <S,[0,1]>, ...}
iteration domain:
{0 <= i < 2*N+5, 0 <= j < i
}

access relations:
{[i;j], [i;j-1]}
schedule: lexicographical
dependency:
<S,[i,j]> -> <S,[i,j-1]> */

}
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Overview of the talk

1. Efficient detection of redundancies in systems of linear inequalities (ISSAC 2024) .
Joint work with Rui-Juan Jing (Jiangsu University), Yan-Feng Xie (Chinese
Academy of Sciences, Beijing) and Chun-Ming Yuan (Chinese Academy of
Sciences, Beijing).

2. Computing the Integer Hull of Convex Polyhedral Sets (CASC 2022) . Joint work
with Lin-Xiao Wang (Microsoft).

3. A Pipeline Pattern Detection Technique in Polly (IMPACT 22, LLPP 22) . Joint
work with Delaram Talaashrafi (NVIADIA) and Johannes Doerfert (Argonne
National Laboratory).
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Outline

Efficient detection of redundancies in systems of linear inequalities

Faster computations of integer hulls fo polyhedral sets

A Pipeline Pattern Detection Technique in Polly
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

−x3 ≤1

−x1 − x2 − x3 ≤2

−x1 + x2 − x3 ≤2

x1 − x2 − x3 ≤2

x1 + x2 − x3 ≤2

x30 ≤1

−x1 − x2 + x3 ≤2

−x1 + x2 + x3 ≤2

x1 − x2 + x3 ≤2

x1 + x2 + x3 ≤2

−x20 ≤1

x2 ≤1

−x1 ≤1

x10 ≤1


0 ≤1 + x2
0 ≤1− x2
0 ≤x1 + 1

0 ≤1− x1
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Application of FME: code generation

1 for(i=0; i<=n; i++){
2 c[i] = 0; c[i+n] = 0;
3 for(j=0; j<=n; j++)
4 c[i+j] += a[i]*b[j];
5 }

1 parallel_for (p=0; p<=2*n; p++){
2 c[p] = 0;
3 for (t=max(0,n-p);
4 t<=min(n,2*n-p);t++)
5 c[p] += A[t+p-n] * B[n-t];
6 }

The new representation allows us to generate the
multithreaded code.

0 ≤ i
i ≤ n
0 ≤ j
j ≤ n
t = n − j
p = i + j



i = p + t − n
j = −t + n
t ≥ max(0,−p + n)
t ≤ min(n,−p + 2n)
0 ≤ p
p ≤ 2n
0 ≤ n.

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i , j.

skip slide
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Removing redundant inequalities in FME

• Removing redundant inequalities, when solving a linear inequality system, is
crucial for improving computational efficiency, for numerical stability, and for the
interpretability of the result.

• Linear programming (LP) has been widely used for this task. .
• Other approaches take advantage of duality in the theory of polyhedral. Then, the

redundant inequalities can be detected by checking the ranks of specific matrices
over Q .

• In our recent paper, we further simplify the redundant detection by manipulating
Boolean matrices on which we perform bit-vector arithmetic.
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test case (n,m, k) mpr BPAS cdd polylib
32hedron (6, 32, 11) 6.54 16.80 4183.08 1.92
64hedron (7,64,13) 13.05 52.42 >5min 1.67
francois (13,27,2304) 499.92 253.66 388.36 > 5min
francois2 (13,31,384) 41.80 140.34 55.17 80.63
herve.in (14,25,262) 34.42 140.34 294.01 30.08

c6.in (11,17,31) 9.85 12.72 84.11 5.56
c9.in (16,18,140) 25.08 65.54 151.17 131.53
c10.in (18,20,142) 22.10 98.68 249.02 16.06
S24 (24, 25,25) 23.50 58.80 748.67 17.47
S35 (35, 36,36) 46.55 182.14 3575.00 46.007
cube (10, 20,1024) 81.33 201.92 125.900 161.06
C56 (5, 6,6) 3.67 4.09 11.81 0.79

C1011 (10, 11,11) 24.99 115.68 1716.25 9.99
C510 (5, 42,10) 12.00 40.01 >5min 4.42
T1 (5, 10,38) 5.61 16.44 27.42 8.81
T3 (10,12,29) 21.29 141.64 288.07 12.07
T5 (5, 10,36) 8.12 15.62 22.92 4.76
T6 (10,20,390) 1142.9 23800.11 14937.61 >5min
T7 (5, 8,26) 5.81 10.79 13.96 4.00
T9 (10,12,36) 36.56 414.53 479.18 100.34
T10 (6, 8,24) 4.58 13.65 18.39 5.27
T12 (5, 11,42) 8.52 19.03 38.65 8.60

R_15_20 (15, 20,1328) 28430.40 336035.00 38037.21 >5min
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Convex polyhedral sets

• A subset P ⊆ Qn is called a convex polyhedral set (or simply a polyhedral set) if

P = {x | Ax ≤ ~b}
holds, for a matrix A ∈ Qm×n and a vector ~b ∈ Qm, where n,m are positive integers.

• We are interested in computing PI the integer hull of P that is the smallest convex

polyhedral set containing all the integer points of P .

1 2 3 4

1

2

3

x

y
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Computing integer hulls (1/3)

The input polyhedral set:
−98877x1 − 189663x2 − 1798x3 ≤ 705915
−10109x1 − 5958x2 − 14601x3 ≤ 31333
−5405x1 + 4965x2 + 3870x3 ≤ 4303504

729x1 − 117x2 + 350x3 ≤ 4561
677x1 + 465x2 − 540x3 ≤ 3489

Normalization (leaves the integer hull
unchanged):
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Computing integer hulls (2/3)

1. The red is an approximation of the integer hull of the input.
2. The integer hulls of border regions (green, blue, purple) are brute-force computed

via FME.
3. Then QuickHull is applied to obtain the integer hull of the input.
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Computing integer hulls (3/3)

The input has only 5 vertices. Its integer hull has 139 vertices.

All details are in https://ir.lib.uwo.ca/etd/8985/ and in
https://doi.org/10.1007/978-3-031-14788-3_14
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Outline

Efficient detection of redundancies in systems of linear inequalities

Faster computations of integer hulls fo polyhedral sets

A Pipeline Pattern Detection Technique in Polly
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Overview

• The polyhedral model is effective for optimizing loop nests using different methods (loop tiling,

loop parallelizing, …)

• They all optimize for-loop nests on a per-loop basis.

• This work is about exploiting cross-loop parallelization, through tasking.

• It is done by detecting pipeline pattern between iteration blocks of different loop nests.

• As of 2022, we were not aware of any fully-automatic, LLVM-based method for detecting

and exploiting parallelization opportunities between iterations of different for-loop nests

through tasking.

We use Polly, an LLVM-based framework, which applies polyhedral transformations: analysis,

transformation, scheduling, AST generation, code generation.

We use OpenMP, which supports task parallelization via:

• task construct and depend clauses.

17



Overview

• The polyhedral model is effective for optimizing loop nests using different methods (loop tiling,

loop parallelizing, …)

• They all optimize for-loop nests on a per-loop basis.

• This work is about exploiting cross-loop parallelization, through tasking.

• It is done by detecting pipeline pattern between iteration blocks of different loop nests.

• As of 2022, we were not aware of any fully-automatic, LLVM-based method for detecting

and exploiting parallelization opportunities between iterations of different for-loop nests

through tasking.

We use Polly, an LLVM-based framework, which applies polyhedral transformations: analysis,

transformation, scheduling, AST generation, code generation.

We use OpenMP, which supports task parallelization via:

• task construct and depend clauses.

17



Overview

• The polyhedral model is effective for optimizing loop nests using different methods (loop tiling,

loop parallelizing, …)

• They all optimize for-loop nests on a per-loop basis.

• This work is about exploiting cross-loop parallelization, through tasking.

• It is done by detecting pipeline pattern between iteration blocks of different loop nests.

• As of 2022, we were not aware of any fully-automatic, LLVM-based method for detecting

and exploiting parallelization opportunities between iterations of different for-loop nests

through tasking.

We use Polly, an LLVM-based framework, which applies polyhedral transformations: analysis,

transformation, scheduling, AST generation, code generation.

We use OpenMP, which supports task parallelization via:

• task construct and depend clauses.

17



Overview

• The polyhedral model is effective for optimizing loop nests using different methods (loop tiling,

loop parallelizing, …)

• They all optimize for-loop nests on a per-loop basis.

• This work is about exploiting cross-loop parallelization, through tasking.

• It is done by detecting pipeline pattern between iteration blocks of different loop nests.

• As of 2022, we were not aware of any fully-automatic, LLVM-based method for detecting

and exploiting parallelization opportunities between iterations of different for-loop nests

through tasking.

We use Polly, an LLVM-based framework, which applies polyhedral transformations: analysis,

transformation, scheduling, AST generation, code generation.

We use OpenMP, which supports task parallelization via:

• task construct and depend clauses.

17



Example

1 for(i=0; i<N-1; i++)
2 for(j=0; j<N-1; j++)
3 S: A[i][j]=f(A[i][j], A[i][j+1], A[

i+1][j+1]);
4
5 for(i=0; i<N/2-1; i++)
6 for(j=0; j<N/2-1; j++)
7 R: B[i][j]=g(A[i][2*j], B[i][j+1],

B[i+1][j+1], B[i][j]);

〈S, [0, 0]〉〈S, [0, 1]〉 〈S, [0, 2]〉 〈S, last〉〈R, [0, 0]〉〈R, [0, 1]〉 〈R, last〉

time

〈S, [0, 0]〉
[〈S, [0, 1]〉
〈S, [0, 2]〉]

[〈S, [0, 3]〉
〈S, [0, 4]〉] 〈S, last〉

〈R, [0, 0]〉 〈R, [0, 1]〉 〈R, last〉

thread_0

thread_1

time

18
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Background

Integer sets and maps

• ISL library represents Z-polyhedra as sets of integer tuples.

• Amap is a binary relation from one set to another.

• The inverse map of a map M, denoted by M−1, is the set of the pairs (~j,~i) such that
(~i ,~j) ∈ M.

• The domain (resp. range) of M denoted by Dom(M) (resp. Range(M)) is the set of all
first elements of members of M (resp. M−1).

• We denote by lexmax(M) (resp. lexmin(M)) the subset of M consisting of all pairs (~i ,~j),
where~i ∈ Dom(M) and~j is the lexicographically largest (resp. smallest) ~k ∈ Range(M)
such that (~i , ~k) ∈ M.

• The composition of two maps M1 and M2 is denoted by M1(M2). It is the set of all pairs
(~i ,~j), such that there exists a vector ~k, where (~i , ~k) ∈ M2 and (~k,~j) ∈ M1.

• Given two sets S1 and S2, the lexleset(S1,S2) maps each element~i ∈ S1 to all elements
~j ∈ S2, where~i is lexicographically less or equal to~j .
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Transformation Algorithm (1/5)

Pipeline map

Consider two statements in a program:

• S: iteration domain I, writes in memory locationM, Wr(I → M)

• T: iteration domain J , reads from memory locationM, Rd(J → M)

The pipeline map between S and T is TS,T(I → J ), where (~i ,~j) ∈ TS,T if and only if:
1. after running all iterations of S up to~i , we can safely run all iterations of T up to~j ,
2. ~i is the smallest vector and~j is the largest vector with Property (1).
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Transformation Algorithm (2/5)

Algorithm step I, computing pipeline map and source/target blocking map

1. Relate the iteration domains:

[P(J → I), P = Wr−1(Rd)], Domain(P) = DP

2. Map each member of DP to all members that are less than or equal to it:

D′
P(J → J )

3. Map each~j ∈ J to the largest~i ∈ I that~j and its previous iterations depend on:
[H(J → I),H = lexmax(P(D′))]

4. The pipeline map is:

TS,T = lexmax(H−1)

5. Partition iteration domain of S (T) with the domain (range) of TS,T:
B = Dom(TS,T), B′ = lexleset(I,B), (B = Range(TS,T) B′ = lexleset(J ,B))

6. Compute source (target) blocking map:

[VS(I → I), lexmin(B′)], ([YT(J → J ), lexmin(B′)])
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Transformation Algorithm (3/5)

After finding the pipeline maps between all pairs of dependent statements, we use them to

block the iteration domains and construct pipeline blocking maps.

The final blocks are such that:

• each block is an atomic task,

• we can establish a pipeline relation between all blocks of all statements,

• maximize the number of blocks of different loops that can execute in parallel.

In the last step, we find dependency relations between the tasks.
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Transformation Algorithm (4/5)

Algorithm step II, computing pipeline blocking maps

There are several source and target blocking maps associated with each statement.

• Minimize the size of the blocks and construct the optimal blocks.

• get the lexmin of the union of all source and target blocking maps:

ES = lexmin((
⋃

j(V
j
S) ∪ (

⋃
i(Y i

S)))

Algorithm step III, computing pipeline dependency relations

In a task-parallel program, there are dependency relations between different tasks.

• Pipeline dependency relations map each block to the blocks it needs to run correctly.

• For a statement S and a pipeline map Ti , where S is the target:

Qi
S = T −1

i (Yi(Range(ES)))
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Transformation Algorithm (5/5)

S1 S2

S3

S4

T1 T2

T3

Optimal block of S3: 〈S3, j3〉
Pipeline dependencies: 〈S1,~i1〉, 〈S2,~i2〉

S4
~i3

~j2~j3 ~j1~j0

S3

S2
~i2

S1
~i1

S4 iterations

S3 iterations

S2 iterations

S1 iterations

skip slide
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Implementation (1/2)

Analysis passes of Polly

Extend analysis passes of Polly to compute pipeline information for the iteration domains.

Scheduling

1. Create a schedule tree to iterate over blocks,

2. Create a schedule tree to iterate inside each blocks,

3. Expand the first tree with the second tree.

4. Create pw_multi_aff_list objects from pipeline dependency relations,

5. Add the pw_multi_aff_list objects as mark nodes to the schedule tree.
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Implementation (2/2)

Abstract syntax tree

Generate AST from the new schedule tree.

The mark nodes in the schedule tree annotates the AST.

Code generation

1. Outline tasks to function calls,

2. Compute unique integer numbers from pw_multi_aff_list objects

◦ this can be used in OpenMP depend clauses.

3. Replace the tasks part in the code with call to the CreateTask function that:

◦ gets tasks and dependencies, creates OpenMP tasks with proper depend clauses,

◦ handles the order between tasks created from the same loop nest.
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Evaluation
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