
OOPredictor

Hassan Arafat

David Bremner

Kenneth Kent

Julian Wang

2024/11/12

CDP @ CASCON

Predicting Object-Oriented Accesses using

Static Analysis

Motivation

 The memory/CPU gap is growing.

Caches used to mitigate the effects of the gap.

Cache performance depends on the locality of access.

Modern CPUs attempt to schedule around long loads.

 If scheduling cannot buy time, the CPU is forced to stall.

 Load stalls cause reduced performance.

OOPredictor Hassan S. A. Arafat

2

Background

 Prefetching: speculatively load data the CPU is

expected to soon use.

 Better ordering of objects on memory, increasing spatial

locality.

Object-Oriented accesses cause a lot of hard-to-predict

pointer chasing patterns.

 Prior knowledge of those patterns can be used by a

myriad of optimizations.

OOPredictor Hassan S. A. Arafat

3

Literature Review

 Data Aware GC that can use data collected during

profiling to better guide the GC (Chilimbi et al. 1998;

Chen et al. 2006; Serrano et al. 2009).

Markov chains show the least fluctuations when

modelling of database accesses of object-oriented

applications (Garbatov and Cachopo 2011).

 Using static analysis to make regexes to model access

patterns, then restructure the way objects in memory are

allocated in C++ (Jeon et al. 2007).

OOPredictor Hassan S. A. Arafat

4

Shortcomings

 Profiling fine-grain information is expensive, even when

cost mitigation strategies are employed.

 Profiling can require an ahead-of-time profiling run.

 Previous work on prediction models didn’t address

memory Object-Oriented accesses, only database

accesses.

 Regular Expressions are limited in the amount of

information they provide.

OOPredictor Hassan S. A. Arafat

5

Design goals

 Predict the Object-Oriented access pattern.

 No added profiling cost.

Model branch biases.

Markov chain output.

 Implement as an optimization within Eclipse OMR, used

with Eclipse OpenJ9 .

OOPredictor Hassan S. A. Arafat

6

Basic operation

 Static analysis is traditionally used to enable beneficial

code transformation, e.g., code motion.

Can be used to predict how the program accesses

objects of a certain type.

 In JIT environments, readily available profiling data can

be used to increase prediction accuracy.

 That information can then be used to find a better order

of related objects in memory.

OOPredictor Hassan S. A. Arafat

7

Statically Derive Access Patterns

 Static analysis at compile time.

 No effect on program running time.

 Process the Control Flow Graph (CFG) already built by
the optimizer.

 Record accesses to object fields that are references.

 Block frequency information used to assign weights.

 Remove the blocks that don’t have any Object-
Oriented accesses while retaining their control flow
information.

OOPredictor Hassan S. A. Arafat

8

Evaluation

 Instrument the OpenJ9 interpreter to record every

getfield and putfield to reference fields.

 Perform two runs, one with the predictor optimization

enabled, one with instrumented interpreter.

 Evaluated our predictor using the Renaissance

benchmark suite.

 Also use SPECJBB2015 and SPECJBB2005 for business-like

workloads.

OOPredictor Hassan S. A. Arafat

9

Metrics

We use two metrics to characterize the accuracy of

the predictor models:

 Termination rate: The percentage of calls that ended

with the model in a final state.

OO match rate: The percentage of object-oriented

accesses that were correctly predicted by the model.

We will be visualizing the data as violin plots that show

the arithmetic mean, median, 1st quartile, 3rd quartile

and a Kernel Density Estimation (KDE) on top.

OOPredictor Hassan S. A. Arafat

10

Apache-spark results

OOPredictor Hassan S. A. Arafat

11

Apache-spark results, cont’d

OOPredictor Hassan S. A. Arafat

12

Functional results

OOPredictor Hassan S. A. Arafat

13

Functional results, cont’d

OOPredictor Hassan S. A. Arafat

14

Conclusion

 Load stalls adversely affect performance.

Current approaches require profiling/ access barriers.

We can derive access patterns with static analysis.

 The predictor performs very well for some methods, but

very poorly for others.

 The predictor can be used to guide minimally intrusive

optimizations that have a low cost of wrong prediction.

OOPredictor Hassan S. A. Arafat

15

	Slide 1: OOPredictor
	Slide 2: Motivation
	Slide 3: Background
	Slide 4: Literature Review
	Slide 5: Shortcomings
	Slide 6: Design goals
	Slide 7: Basic operation
	Slide 8: Statically Derive Access Patterns
	Slide 9: Evaluation
	Slide 10: Metrics
	Slide 11: Apache-spark results
	Slide 12: Apache-spark results, cont’d
	Slide 13: Functional results
	Slide 14: Functional results, cont’d
	Slide 15: Conclusion

