Mc2For: a compiler to transform
MATLAB to Fortran 95

Presenter: Xu Li
Supervisor: Laurie Hendren
School of Computer Science

McGill University
xu.li2@mail.mcgill.ca

MATLAB Everywhere!

Dynamic features, which is |
ideal for fast prototyping;

Availability of many high-

level array operations and;

Access to a rich set of built-
in functions.

A quite big user community:

— students, engineers and
even scientists;

EDITOR PLELISH VIEW Pes |
= i i = . =
El_lj - H Ll Find Files : = L/ (P
Compare —_— |
Mew Open Save = F EDIT - MAVIGATE Breakpoints Run Runand |
- - - E‘qPrim - e - - - Time |
|
FILE EREAKPOINTS |
drv_bakbai. m x|babaLm x| {
function z_hat = babai(R,y) [
ik ;
% compute the Babai estimatiaon i
% find a sub-optimal solution for nin_z | |RYz-v||_2 |
% R - an upper triangular real matrix of n-by-n
% v - a real wector of n-by-1
% z_hat - resulting integer wector |
%% |

= e e
[o T T S T S P T < R YR TR SR T T
[T | [

n=lengthiy];
z_hat=zerosin,1l);
z_hat{n)=round{y{nl. /R{n,n)J;

for k=n-1:-1:1
par=R{k,k+l:n)%z_hat{k+l:n);
ck=Cy(k)-par)./Rik,k];
z_hat{kl=round{ck);

end

R EEEEEEEEEEEEEEIEIIE=,

U (Babai nearest plane algorithm)

-

Why NOT MATLAB?

* When problem size

grows bigger, like meow

— function be called a
large number of
times in one second; =)\ |\

ek
/

— large-sized input
arrays. R

Why NOT MATLAB?

* When problem size
grows bigger, like
— function be called a

large number of
times in one second;

— large-sized input
arrays.

* Another open source TO GO OPEN SOURCE
» NEAREST SOFTWARE RESPOSITORY
alternative!

Why Fortran?

e History between MATLAB and
Fortran;

e Similar syntax;
* Both in column-major order;

e Optimizing Fortran libraries for
solving linear algebra problem,
like BLAS and LAPACK;

* Numerous optimizing Fortran
compilers, including open
source compilers like GFortran;

Mc2For: a compiler to transform MATLAB

2013/11/19 to Fortran 95

There are challenges...

* Dynamic features in
MATLAB:

— no type declaration
for variables;

— arrays can be grown
by out-of-bound
index;

— linear array indexing;

— numerous overloaded

built-in functions.

I EDITOR PUELISH VIEW |_?'.u',
= ind Fi = = =%
EI_I:I - H Lg] Find Files u [/ (P
C -~ N
Mew Open Save L Hempare EDIT - MAVIGATE preakpoints Rum Run and ‘
- - - [—j Print = - - - - Time |
FILE BREAKPOINTS
dirw_babai.m x| habai.m x|
1 function z_hat = habailR,y)
2 %%
3 % compute the Babai estimation
4 % find a sub-optinal solution for min_z | [R¥z-v||_2 |
5 % R - an upper triangular real matrix of n-by-n
& % v - a real wector of n-by-1
7 % z_hat - resulting integer wector
a %%
9 - n=lengthiyl;
10 - z_hat=zeros(n,l);
11 - z_hat{ni=round(v(nl. /R{n,n)J;
12
13 - for k=n-1:-1:1
14 - par=Rik,k+l:n)*z_hat{k+1l:nJ;
15 - ck=({yikl-par). Rik,kJ;
16 - z_hat(kl=round(ckl;
17 - end
18

—— S

(Babai nearest plane algorithm)

— e S

Here comes Mc2For!

r-.

b

“Me2Eor

High performance,
as well as an open

Fast prototyping

source alternative

Overview of Mc2For

main.m| with
.m
e s U <€
type and shape of = A
input PQl’JlﬂGtGl’(S)Uber_dehned functions
PN

—

N

Nkiﬂb[%ontEnayj
McAST]
¥ Shape Analysis
hddiAF-kThnmei: i
Range Value Analysis
\amerIR
[Tamer+

MCcAST
I

N7

Fortran IR Generator
Pretty Printer

WV I.Iﬁ-l
main.fo5| == 95

2013/11/19

user-defined functions

function simple(n)

a=2+2;

enﬂ

Mc2For: a compiler to transform MATLAB

to Fortran 95

{n=(double,[1, 1])}
B s e e S

Overview of Mc2For

function simple(n)

main.m| with e a=2+42; ' + {n=(double,[1, 1])}

type and shape of e Fietione i
input Pal.an1eter(s)l.lb€‘r—k elfimed runctions

AN end
e | d
N7 B args: {n=(double,[1, 1])}
McLab Front End function [] = simple(n)
‘ mc_to = 2; % mc_to=(double,2.0,[1, 1],<2, 2>,REAL)
McASTI mc_t1 = 2; % mc_ti1=(double,2.0,[1, 1],<2, 2>,REAL)
- [a] = plus(mc_t@, mc_t1); % a=(double,4.0,[1, 1],<4, 4>,REAL)
Shape Analysis end
MCSAF + Tamert : e tter
Range Value Analysis _
dAdamerlR
Tamer+
McAST
1
N
Fortran IR Generator
Pretty Printer

N7
main.fo5| == 95 |_-I

user-defined functions

Mc2For: a compiler to transform MATLAB

2013/11/19 to Fortran 95

Overview of Mc2For

3 .
main.m| with i

type and shape of
input parameter(s

I—l
N
McLab Front End

McAST]

N
McSAF + Tmnerl(;

———praeriR

)user—defined functions
N |

Shape Analysis
Range Value Analysis

function simple(n)

a=2+2;

.|. {n=(double,[1, 1])}

Enﬂ

B args: {n=(double,[1, 1])}
function [] = simple(n)
mc_te 2;

% mc_to=(double,2.0,[1, 1],<2, 2>,REAL) B

mc_til 2; % mc_ti=(double,z.0,[1, 1],<2, 2>,REAL)
[a] = plus(mc_t@, mc_t1); % a=(double,4.0,[1, 1],<4, 4>,REAL)

end

% results:

[]

[Tamer+ || €—

W B Wak o
IVIC TN

1
N2

Fortran IR Generator

L

Pretty Printer

N7
main.fo5| == f95 ﬂ

user-defined functions

2013/11/19

Mc2For: a compiler to transform MATLAB
to Fortran 95

unction t] = simple(n)
[a] = plus(2, 2);

10

Overview of Mc2For

main.m

r
with i

type and shape of
input parameter(s

)user—defined functions

AN
S |
N
McLab Front End
McAST]
F Shape Analysis
MCcSAF + Tamer i
Range Value Analysis
\amerIR
| Tamer+
McAST
|
N2
Fortran IR Generator
I
Pretty Printer
v
main.fo5| == 95
user-defined functions

function simple(n)

.|. {n=(double,[1, 1])}
TR "

a=2+2;

Enﬂ

B args: {n=(double,[1, 1])}
function [] = simple(n)
2;

% mc_to=(double,2.0,[1, 1],<2, 2>,REAL)

mc_te =
mc_tl = 2; % mc_ti=(double,z.0,[1, 1],<2, 2>,REAL)
[a] = plus(mc_t@, mc_t1); % a=(double,4.0,[1, 1],<4, 4>,REAL)

end

% results:

[]

IFunction [j = simple(n)}
[a] = plus(2, 2);
end

PROGRAM simple
IMPLICIT NONE
DOUBLE PRECISION :: a, n

2013/11/19

a=1(2+ 2);

END PROGRAM

Mc2For: a compiler to transform MATLAB
11
to Fortran 95

Shape Analysis

What is the shape analysis?
Why we need the shape analysis?
How we implement the shape analysis?

Biggest challenge:

— Need a mechanism to propagate shape information
through MATLAB built-in functions.

* i.e., what is the shape of z_hat after the statement of “z_hat
= zeros(n, 1)” in the example?

Shape Propagation Equation Language

* length in “n = length(y)”:
SIM—>5S
*the shape of output depends on nothing
* round in “z_hat(k) = round(ck)”:
S2S[IM>M

*depends on the shape of input

e zerosin “z_hat = zeros(n, 1)”:
[1=2 S || (S,n=previousScalar(),add(n))+ 2> M

*depends on the value of input

Shape Propagation Equation Language

The general structures and semantics of constructs in SPEL:

— CASELIST : :=casel || case2 || case3

— CASE ::= pattern list 2 shape output list

— PATTERN LIST ::= pakxpl, pakxp2, ... pakxpn
— PATTERN EXPRESSION:

* shape matching expressions (SME), can be S, uppercases, and [m,...n],
* helper function calls, and
* assignment expressions

— SHAPE OUTPUT LIST ::= ouExp1l, oukExp2, ... ouExpn
* same representation as SME, can be S, uppercases, and [m,...n]

— OPERATORS:

o 1) (D)) (k) U,) o\ n
o “()”, “?" “*” “4” and “|”.

Range Value Analysis

 What is the range value analysis?

— an extended constant propagation, which statically
estimates the minimum and maximum values each
scalar variable could take at each program point.

* Why we need the range value analysis?

— to avoid generating unnecessary run-time array
bounds checking code.

* How is the range value of a variable represented?
<minimum, maximum>

Range Value Analysis

* How we implement the range value analysis?

* We select a set of commonly used scalar built-
in functions or operators and implement the
RVA functions for each of them.

unary plus (+) binary plus (+)

unary minus (-) binary minus (-)
element-wise multiplication (. *) | matrix multiplication ()
element-wise rdivision (. /) matrix rdivision (/)
natural logarithm (log (x)) exponential (exp (x))
absolute value (abs (x)) colon (:)

Tamer+: a Refactoring Component

« Tamer IR is suitable for static flow analysis, but maybe not
ideal for code generation.

[n] = length(y);
mc_t25 = 1;
[z_hat] zeros(n, mc_t25);

[mc_t8] = y(n);

[mc_t9] R(n, n);
[mc_t7] rdivide(mc_t8, mc_t9);
[mc_t5] round(mc_t7);
z_hat(n) = mc_t5; \
mc_t26 = 1; r
n=1ength(y); [mc_t23] = minus(n, mc_t26);
. mc_t27 = 1;
z_hat=zeros(n, l)’ b [mc_t24] = uminus(mc_t27);
z_hat(n)=round n)./R(n,n)); mc_t3e = 1;
- (n) (y()l RN, 0005 ‘ for k = (mc_t23 : mc_t24 : mc_t30); ¥
mc_t15 = k; {
for k=n-1:-1:1 8 I mc_t28 = 1; .
ines ! A 34 lines
par=R(k,k+1:n)*z_hat(k+1:n); %Sc{ifi n;plus(k' ne_t28);
ck:(y(k)-par)./R(k,k); [mc_t16] = colon(mc_t17, mc_t18);
z hat(k)-round(ck)' [mc_t10] = R(mc_t15, mc_tl6);
e ox > } mc_t29 = 1;
iend [mc_t13] = plus(k, mc_t29);
——— - . mc_t14 = n;)

[mc_t12] colon(mc_t13, mc_t14);
(Input MATLAB Code) et < st |
[par] = mtimes(mc_t10, mc_t11);
[mc_t21] = y(k);
mc_t22 = par;]
[mc_t19] = minus(mc_t21, mc_t22);
[mc_t20] = R(k, k);

[ck] = rdivide(mc_t19, mc_t20); h

[mc_t6] = round(ck); 4

z_hat(k) = mc_t6; [
end

(Transformed MATLAB code in Tamer IR Version)

Mc2For: a compiler to transform MATLAB

2013/11/19 to Fortran 95

Tamer+: a Refactoring Component

L i

=
~

THAT ESCALATED QUICKLY-

Mc2For: a compiler to transform MATLAB

2013/11/19 to Fortran 95

18

Tamer+: a Refactoring Component

e Special thanks to Amine;
* From low-level three-address IR to a high-level IR, Tamer+ IR;

e Based on static flow analysis of def-use and use-def chains.

n=length(y); [n] = length(y);

z_hat=zeros(n,1); [z_hat] = zeros(n, 1);

z_hat(n)=round(y(n)./R(n,n)); | z_hat(n) = round(rdivide(y(n), R(n, n)));

for k=n-1:-1:1 for k = (minus(n, 1) : uminus(1) : 1);
par=R(k,k+1:n)*z_hat(k+1:n); | [par] = mtimes(R(k, colon(plus(k, 1), n)), z_hat(colon(plus(k, 1), n)));
ck=(y(k)-par)./R(k,k); ‘ [ck] = rdivide(minus(y(k), par), R(k, k));
z_hat(k)=round(ck); z_hat(k) = round(ck);

lend P end

(Input MATLAB Code) (Transformed MATLAB code in Tamer+ IR Version)

Code Generation

* An extensible Fortran code generation framework
— converting Tamer+ IR to a simplified Fortran IR;

* Handles the general mappings

— like types, commonly used operators, not-directly-mapped
built-in functions, and standard constructs, like if-else, for
loop and while loop;

 Handles some dynamic features of MATLAB

— like run-time array bounds checking, run-time array growth,
variable redefinition, and built-in function overloading.

Run-time ABC and Array Reallocation

! inline runtime ABC and error handle

IF (k > SIZE(R, 1) .OR. INT(n) > SIZE(R, 2)) THEN
STOP "INDEX OUT OF BOUND";

END IF

IF (INT(n) > SIZE(z_hat, 1)) THEN
STOP "INDEX OUT OF BOUND";

END IF

\

n=length(y);
z_hat=zeros(n,1);
z_hat(n)=round(y(n)./R(n,n));

ortran Code Snippet

! inline runtime ABC and reallocation
z_hat_d1 = SIZE(z_hat, 1);
z_hat_d2 = 1;
IF (k > z_hat_d1) THEN
IF (ALLOCATED(z_hat_bk)) THEN
DEALLOCATE(z_hat_bk);
END IF
ALLOCATE(z_hat_bk(z_hat_d1, z_hat_d2));
z_hat_bk = z_hat;
DEALLOCATE(z_hat);
z_hat_dimax = k;
z_hat_d2max = 1;
ALLOCATE(z_hat(z_hat_dimax, z_hat_d2max));

for k=n-1:-1:1

L1 [par=R(k,k+1:n)*z_hat(k+1:n);]
ck=(y(K)-par)./R(K,K);

L2 [z_hat(k)=round(ck); |

nd

END IF
1

Z hat(k, 1) = NINT(cK);

Mc2For: a compiler to transform MATLAB
to Fortran 95

2013/11/19

z_hat(1:z_hat_d1, 1:z_hat_d2) = z_hat_bk(1:z_hat_d1, 1:z]

1))@

hat_d2);§

21

Mapping Built-in Functions

* Built-in function mapping framework:
— directly-mapped operators;

— easily-transformed and then inlined operators, like left
division and colon;

— not-directly-mapped built-ins, for most MATLAB built-
in functions: leave a hole with same function
signature.

e Overloading of built-ins:
— using Fortran INTERFACE construct.

Performance & LOC Comparison

0
adpt bbai bubl capr closclos2 cri dich diff fiff mbrinb1d

(Performance with same problem size)

LOC Comparison (F / M)

w

L
W
:

3]
T

-
o
:

—_

=2
5
;

adpt bbai bubl capr clos crni dich diff fiff mbrt nbid

(LOC with nocheck option)

For most benchmarks, performance speedup is from around 5 to 30;

For benchmark clos, 24 times slower, using MATMUL of Fortran;

3.5 times slower, using DGEMM from one BLAS library;

MATLAB uses Intel MKL, which has a better implementation of BLAS on Intel Chips;
The LOC of generated Fortran is in an acceptable range.

Future Work

e Constraint analysis
— to further remove unnecessary inlined run-time
ABC;
* Dependency analysis

— to determine which MATLAB code block is free
from dependency and safe to be transformed to
parallel code;

Thank You & Questions?

 Several useful links:

— McLab: www.sable.mcgill.ca/mclab/

— Mc2For: www.sable.mcgill.ca/mclab/mc2for.html

— MclLab on GitHub:
https://github.com/Sable/mclab/tree/develop

e Convert some MATLAB to Fortran?
— McLab list: mclab-list@sable.mcgill.ca

— Xu Li: xu.li2@mail.mcgill.ca

http://www.sable.mcgill.ca/mclab/
http://www.sable.mcgill.ca/mclab/mc2for.html
https://github.com/Sable/mclab/tree/develop
mailto:mclab-list@sable.mcgill.ca
mailto:mclab-list@sable.mcgill.ca
mailto:mclab-list@sable.mcgill.ca
mailto:xu.li2@mail.mcgill.ca

* FOLLOWING SLIDES ARE BACKUP SLIDES.

Range Value Analysis (cont.)

* Domain of the range values:
— A closed numeric value interval, ordered by
-inf < all the real numbers < +inf

— To support RVA through relational built-in
functions, we add two superscript symbols, + and
-, to the real numbers. For example, 5, which can
be interpreted as 5- &, where & is positive and
close to 0, and of course, 5- & < 5.

Range Value Analysis (cont.)

function range_value_binary_plus(op_a. op_b)
if both op_a and op_b have known range values

<a,b> = get range value pair from op_a
<c,d> = get range value pair from op_b
return [<atc .b+d>

Note that, a, b, c and d are values

else
return /Zunknown in the domain of range values,

end if

which is {-inf, real numbers, +inf}.

binary +: if any operand is -inf (+inf), the result will
be -inf (+inf); if neither of the operands 1s -inf nor
+inf, the + operator follows the rule as:
¥ +y @ Tygormz¥y =(ety) ;
xt + y+, rt + Y Or . @ + y+ = (.r . y)+;

Tz +y=(z+y);

Mc2For: a compiler to transform MATLAB
o to Fortran 95

Benchmarks

adpt finds the adaptive quadrature using Simpson's rule. This benchmark
features an array whose size cannot be predicted before compilation.

bbai solves the closest vector problem in linear algebra;

bubl is the standard bubble sort algorithm. This benchmark contains
nested loops and consists of many array read and write operations.

capr computes the capacitance of a transmission line using finite
difference and Gauss-Seidel method. It's a loop-based program that
involves basic scalar operations on two small-sized arrays.

clos calculates the transitive closure of a directed graph. It contains matrix
multiplication operations between two 450-by-450 arrays.

Benchmarks (cont.)

crni computes the Crank-Nicholson solution to the heat equation. This benchmark
involves some elementary scalar operations on a 2300-by-2300 array.

dich computes the Dirichlet solution to Laplace's Equation. It's also a loop-based
program which involves basic scalar operation on a small-sized array.

diff calculates the diffraction pattern of monochromatic light through a
transmission grating for two slits. This benchmark also features an array hose size
is increased dynamically like the benchmark adpt.

fiff computes the finite-difference solution to the wave equation. It's a loop-based
program which involves basic scalar operation on a 2-dimensional array.

mbrt computes a mandelbrot set with specified number elements and number of
iterations. This benchmark contains elementary scalar operations on complex type
data.

Benchmarks (cont.)

 nbldsimulates the gravitational movement of a set of objects. It involves
computations on vectors inside nested loops.

