Using Machine Learning to Automatically Tune GPU Program Performance

Tianyi David Han and Tarek Abdelrahman

Department of Electrical and Computer Engineering

University of Toronto

November 19, 2013

Why GPU Auto-Tuning?

- Optimization plays a critical role in better utilizing GPU compute power
- Optimization effect heavily depends on GPU architecture and other optimizations
 - Difficult to select the best-performing optimization(s)
- Fast-paced architectural enhancements demand frequent re-tuning

- Traditional approaches
 - Analytical modeling (heuristic)
 - Empirical search

Performance	Speed	Amount of Effort
-------------	-------	------------------

- Traditional approaches
 - Analytical modeling (heuristic)
 - Empirical search

	Performance	Speed	Amount of Effort
Analytical Modeling			

- Traditional approaches
 - Analytical modeling (heuristic)
 - Empirical search

	Performance	Speed	Amount of Effort
Analytical Modeling			
Empirical Search			

- Traditional approaches
 - Analytical modeling (heuristic)
 - Empirical search

	Performance	Speed	Amount of Effort
Analytical Modeling			
Empirical Search			
Machine Learning			

Outline

- Motivation
- Feasibility study
 - Should loops be interchanged in image-processing kernels?
- Conclusions and future work

Feasibility Study: Application Domain

- Auto-tuning for mobile GPUs
- Computational photography on smartphones
- Start with image processing applications

Feasibility Study

A typical image processing application

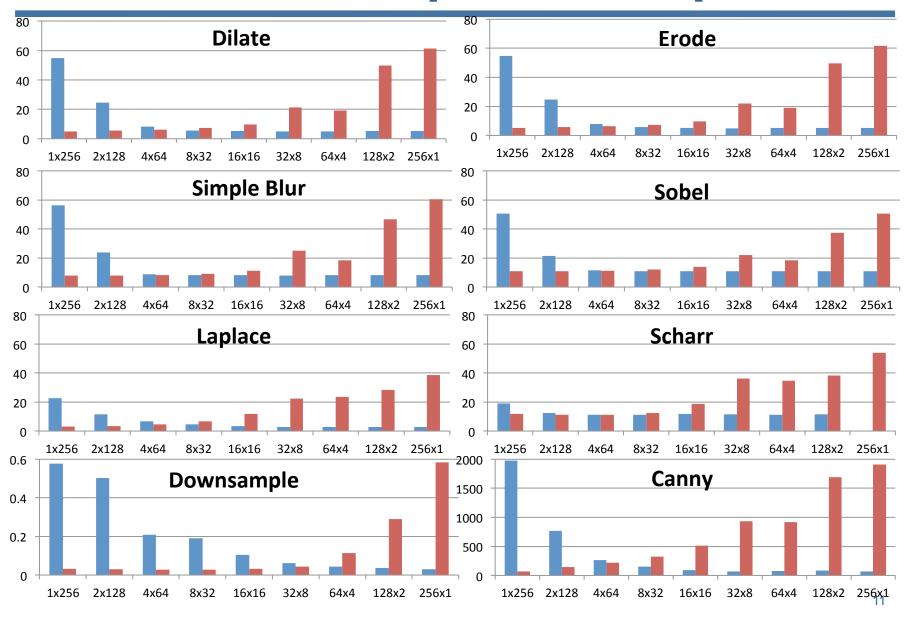
```
read image;
for (row = 0; row < img rows; ++row)</pre>
    for (col = 0; col < img cols; ++col)</pre>
        read image pixels at and around (row, col);
        process image pixels;
        write image pixel at (row,col);
write image;
```

Feasibility Study

A typical image processing application

```
Launch Configuration
read image;
#pragma kernel main tblock(BY,BX) thread(TY,TX)
#pragma loop partition over tblock over thread
for (row = 0; row < img rows; ++row)</pre>
#pragma loop partition over tblock over thread
    for (col = 0; col < img cols; ++col)
                                                          Loop Order
        read image pixels at and around (row, col);
        process image pixels;
        write image pixel at (row,col);
write image;
                  What should the loop order be given a launch configuration?
```

Performance Impact of Loop Order



Why Loop Order Matters?

Loop Order + Launch Configuration

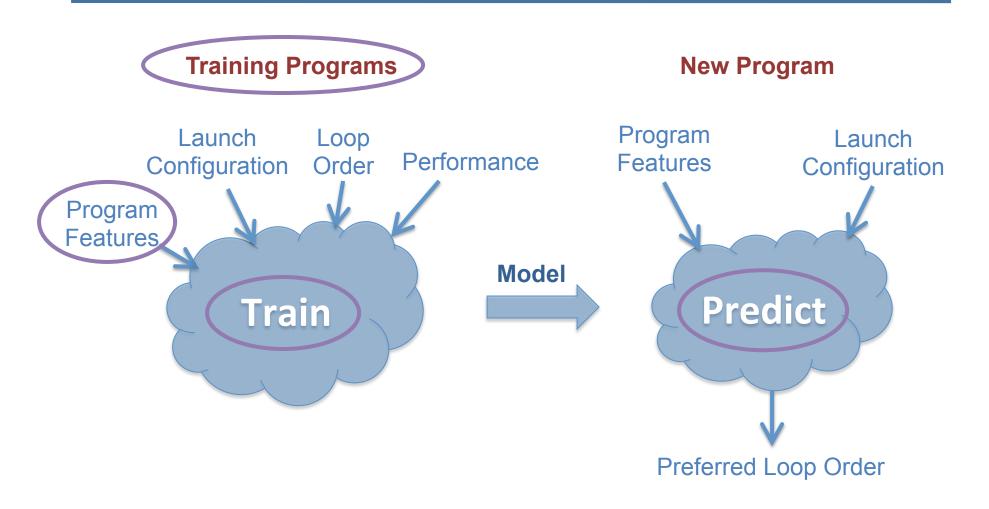
Distribution of loop iterations among GPU threads

Image pixels accessed by concurrent GPU threads

Degree of memory coalescing

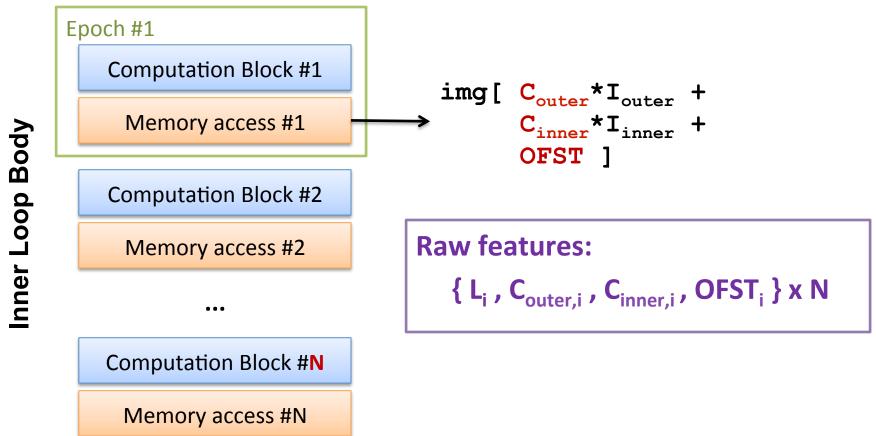
Kernel Performance

Learning Experiment Overview



Program Features

- What influences the preference of loop order?
 - Degree of coalescing of each memory access
 - Interleaved computation that hides access latencies



First Experiment: Raw

- Model inputs:
 - $\{ L_i, C_{outer,i}, C_{inner,i}, OFST_i \} x N$
 - Launch configuration: BX, BY, TX, TY
 - When loops interchanged, swap C_{outer} and C_{inner}
- Model output: kernel execution time
- Given a new kernel + a launch configuration
 - Use model to predict execution time with both loop orders
 - Choose the loop order that gives lower execution time

Experiment Setup (Raw)

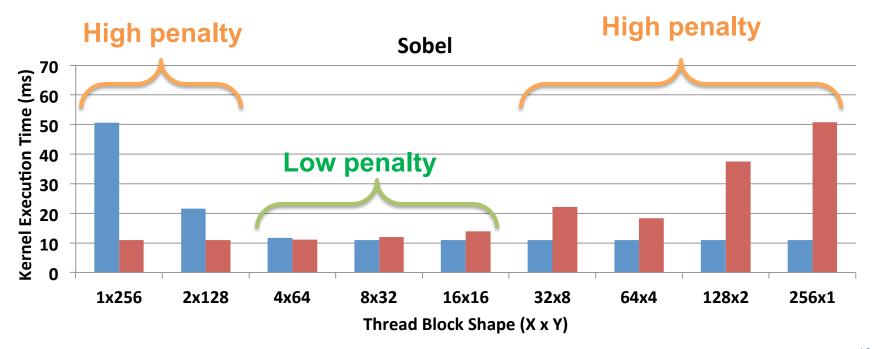
- Synthetically generated kernels
 - Each has two perfectly nested loops
 - but differs in computation length and memory accesses in inner loop body
- Two kernel sets
 - K1: 4000 single-epoch kernels
 - K10: 4000 kernels with at most 10 epochs
- Collect execution time of each kernel with 3 launch configurations and both loop orders
 - On NVIDIA Tesla M2070
 - -(TX, TY) = (32, 8), (8, 32), (2, 128); (BX, BY) = (360, 1)

Experiment Setup (Raw)

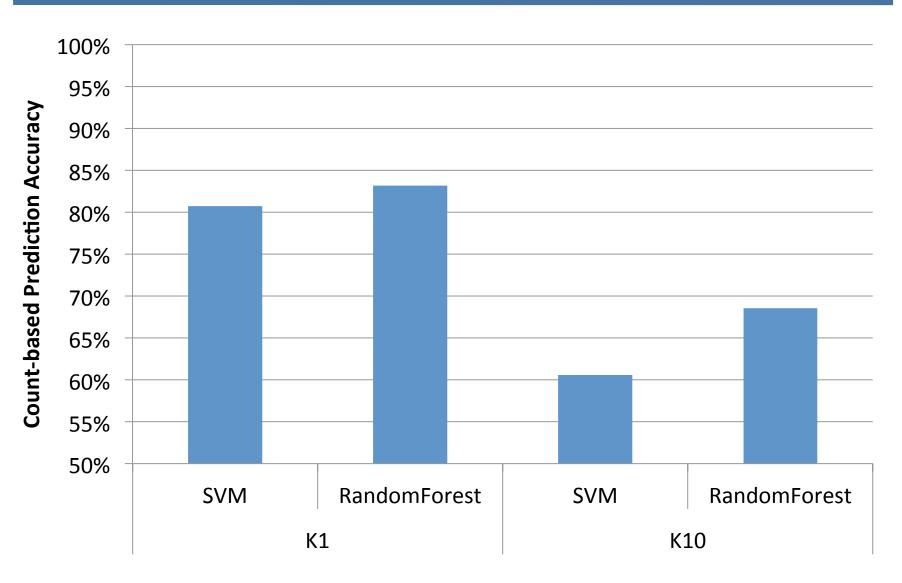
- Two ML algorithms (regression)
 - SVMLight (default over-fitting parameter, Gaussian kernels)
 - Waffles RandomForest (160 trees, 4 attributes per tree)
- For each kernel set, train on a random 1000 kernels and test on the remaining 3000 kernels
- How to evaluate prediction accuracy on the test set?

Evaluation Metric

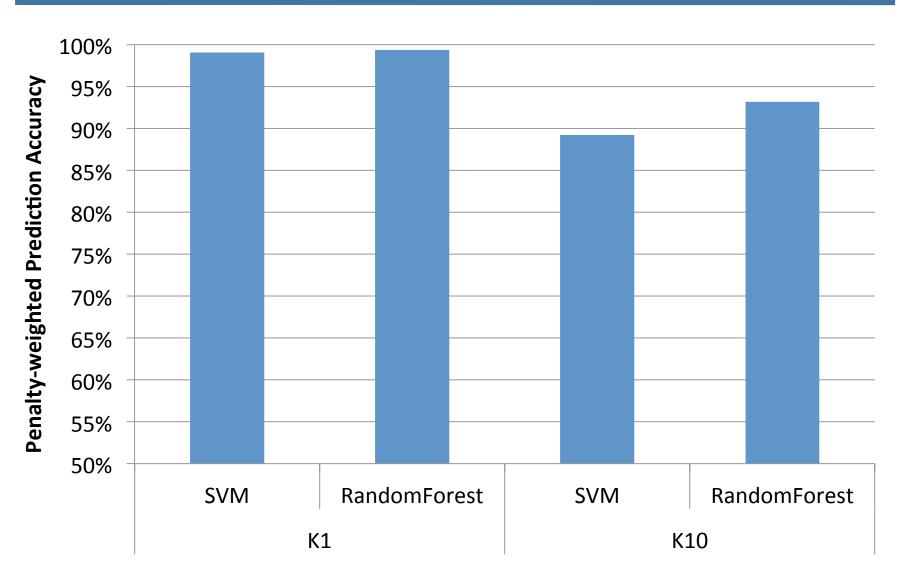
- Count-based Prediction Accuracy
 - % of test samples where the predicted loop order does give better kernel performance
- Penalty-weighted Prediction Accuracy
 - % of best performance achieved by predicted loop order



Experiment Result (Raw)



Experiment Result (Raw)



Dealing with Large Program Space

- Program space is inherently large
- The number of input features in RAW grows with program length (# of epochs)
- Train one or more smaller models, each focusing on a short program segment
- Use program structure to link these models
 - e.g., execution time of a series of code segments is roughly the sum of per-segment execution times

Second Experiment: Raw-S

Train on single-epoch kernels

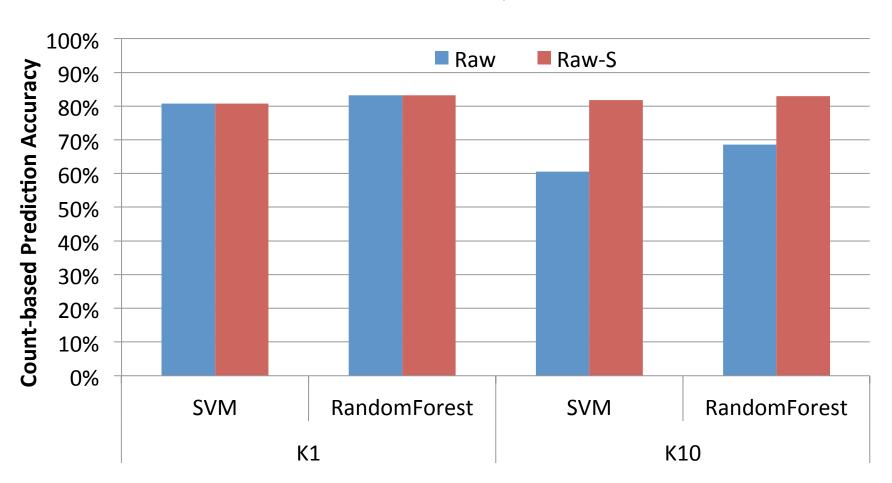
- Model inputs:
 - { L_i, C_{outer,i}, C_{inner,i}, OFST_i }
 - Launch configuration: BX, BY, TX, TY
 - When loops interchanged, swap C_{outer} and C_{inner}
- Model output: kernel execution time

Given a new K-epoch kernel + a launch configuration

- Predict execution time with each loop order, by
 - Using the model (K times) to predict execution time of each epoch
 - Summing the per-epoch predicted time
- Choose the loop order that gives lower execution time

Experiment Setup / Result (Raw-S)

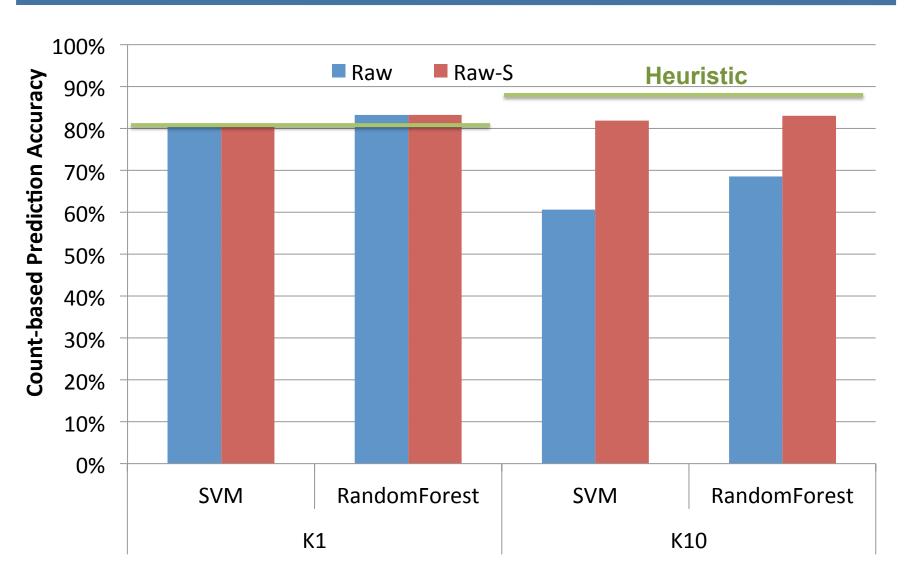
- Same two kernel sets K1 and K10
- Train on a random 1000 kernels in K1, and test on all kernels in K10



Applying GPU Expertise

- Loop order affects the degree of memory coalescing, thus kernel performance
- We can estimate # of DRAM transactions for each memory access in the inner loop body
 - Given the launch configuration
- A heuristic for kernel performance: total memory transactions from the inner loop body

Experiment Result (All)



What We Learnt

Machine learning can be a fast, accurate solution to auto-tuning,

If it is intelligently applied and integrated with our generic knowledge about programs

Beyond the "Toy" Problem

- Expand the optimization space to consider
- Currently working on a 7-D optimization space, with about ~50K valid configurations
- Two challenges:
 - Large program space
 - Large optimization space
- Collect kernel performance data for all configurations?
- Train a performance predictor?
- Compare ML performance against Oracle?

Thank You!

Questions?