Using Machine Learning to
Automatically Tune
GPU Program Performance

Tianyi David Han and Tarek Abdelrahman

Department of Electrical and Computer Engineering
University of Toronto

November 19, 2013

Why GPU Auto-Tuning?

» Optimization plays a critical role in better utilizing
GPU compute power

* Optimization effect heavily depends on GPU
architecture and other optimizations
— Difficult to select the best-performing optimization(s)

» Fast-paced architectural enhancements demand
frequent re-tuning

Why Machine Learning?

« Traditional approaches
— Analytical modeling (heuristic)
— Empirical search

| performance | Speed _ Amourt of for

Why Machine Learning?

« Traditional approaches
— Analytical modeling (heuristic)
— Empirical search

| performance | Speed | Amountof Effor
Analytical ‘ ‘ ‘
Modeling

Why Machine Learning?

« Traditional approaches
— Analytical modeling (heuristic)
— Empirical search

| performance | Speed | Amountof Effor
Analytical ‘ ‘ ‘
Modeling

Empirical ‘ ‘ ‘
Search

Why Machine Learning?

« Traditional approaches
— Analytical modeling (heuristic)
— Empirical search

| erformance | Speed | Amount of Efr
Analytical ‘ ‘ ‘
Modeling

Empirical ‘ ‘ ‘
Search

Machine ‘ ‘ ‘

Learning

Outline

* Feasibility study
— Should loops be interchanged in image-processing
kernels?

 Conclusions and future work

Feasibility Study: Application Domain

* Auto-tuning for mobile GPUs
« Computational photography on smartphones

« Start with image processing applications

Feasibility Study

* Atypical image processing application

read image;

for (row = 0; row < img rows; ++row)

for (col = 0; col < img cols; ++col)

{

read image pixels at and around (row,col);
process image pixels;
write image pixel at (row,col);

}

write image;

Feasibility Study

* Atypical image processing application

Launch Configuration
read image; -

#pragma kernel main tblock (BY,BX) thread(TY, TX)
#pragma loop partition over tblock over thread
for (row = 0; row < img rows; ++row)
#pragma loop partition over tblock over thread
for (col = 0; col < img cols; ++col)
{
read image pixels at and around (row,col);
process image pixels;
write image pixel at (row,col);

}

“ Loop Order

write image; What should the loop order be given a launch configuration?

10

Performance Impact of Loop Order

80
Dilate Erode
60 60
40 40
20 20
0 0 -
1x256 2x128 4x64 8x32 16x16 32x8 64x4 128x2 256x1 1x256 2x128 4x64 832 16x16 32x8 64x4 128x2 256x1
80 80
Simple Blur Sobel
60 60
40 40 -
20 20 A
0 0 -
1x256 2x128 4x64 8x32 16x16 32x8 64x4 128x2 256x1 1x256 2x128 4x64 8x32 16x16 32x8 64x4 128x2 256x1
80 80
o Laplace o Scharr
40 40
20 20
0 0 -
1x256 2x128 4x64 8x32 16x16 32x8 64x4 128x2 256x1 1x256 2x128 4x64 8x32 16x16 32x8 64x4 128x2 256x1
0.6 2000
Downsample 1500 Canny
0.4
1000 -
0.2
500 -
0 0 -

1x256 2x128 4x64 8x32 16x16 32x8 64x4 128x2 256x1 1x256 2x128 4x64 8x32 16x16 32x8 64x4 128x2 25qx|1

Why Loop Order Matters?

Loop Order + Launch Configuration

<

Distribution of loop iterations among GPU threads

<

Image pixels accessed by concurrent GPU threads

¢

Degree of memory coalescing

<

Kernel Performance

12

Learning Experiment Overview

Graining Progra@ New Program

Launch Loop Program Launch
Configuration Order Performance Features Configuration

Program
Features

Model

Preferred Loop Order

13

Program Features

* What influences the preference of loop order?

— Degree of coalescing of each memory access
— Interleaved computation that hides access latencies

Epoch #1
Computation Block #1 _
lmg [Couter*:l:outer +
%. Memory access #1 ppe— Cimner*Timner +
O OFST]
m
o Computation Block #2
O
o
- Memory access #2 Raw features:
| S
()
E { I'i ’ Couter,i ’ c:inner,i' OFSTi }X N

Computation Block #N

Memory access #N

14

First Experiment: Raw

* Model inputs:
- { I—i ’ Couter,i J Cinner,i’ OI:ST| } x N
— Launch configuration: BX, BY, TX, TY

— When loops interchanged, swap C_ .. and C,

outer inner

* Model output: kernel execution time

* Given a new kernel + a launch configuration
— Use model to predict execution time with both loop orders
— Choose the loop order that gives lower execution time

15

Experiment Setup (Raw)

Synthetically generated kernels
— Each has two perfectly nested loops

— ... but differs in computation length and memory accesses in inner
loop body

Two kernel sets
— K1: 4000 single-epoch kernels
— K10: 4000 kernels with at most 10 epochs

Collect execution time of each kernel with 3 launch
configurations and both loop orders

— On NVIDIA Tesla M2070

— (TX, TY) = (32, 8), (8, 32), (2, 128); (BX, BY) = (360, 1)

16

Experiment Setup (Raw)

« Two ML algorithms (regression)
— SVMLight (default over-fitting parameter, Gaussian kernels)
— Waffles RandomForest (160 trees, 4 attributes per tree)

 For each kernel set, train on a random 1000 kernels and
test on the remaining 3000 kernels

» How to evaluate prediction accuracy on the test set?

17

Evaluation Metric

« Count-based Prediction Accuracy

— % of test samples where the predicted loop order does give better
kernel performance

* Penalty-weighted Prediction Accuracy
— % of best performance achieved by predicted loop order

High penalty Sobel High penalty

—~ 70 A A

Ee0 ¢ Y 1 Y

§ 40 Low penalty

1x256 2x128 4x64 8x32 16x16 32x8 64x4 128x2 256x1
Thread Block Shape (X x Y)
18

Count-based Prediction Accuracy

100%
95%
90%
85%
80%
75%
70%
65%
60%
55%
50%

Experiment Result (Raw)

|

K1

RandomForest

‘ RandomForest

K10

19

Penalty-weighted Prediction Accuracy

100%
95%
90%
85%
80%
75%
70%
65%
60%
55%
50%

Experiment Result (Raw)

SVM

K1

RandomForest

SVM

K10

RandomForest

Dealing with Large Program Space

Program space is inherently large

The number of input features in RAW grows with
program length (# of epochs)

Train one or more smaller models, each focusing
on a short program segment

Use program structure to link these models

— e.g., execution time of a series of code segments is
roughly the sum of per-segment execution times

21

Second Experiment: Raw-S

Train on single-epoch kernels

* Model inputs:
- { I-i ’ Couter,i ’ Cinner,i! OFSTI }
— Launch configuration: BX, BY, TX, TY

— When loops interchanged, swap C_ .. and C,

outer inner

* Model output: kernel execution time

Given a new K-epoch kernel + a launch configuration

* Predict execution time with each loop order, by
— Using the model (K times) to predict execution time of each epoch
— Summing the per-epoch predicted time

« Choose the loop order that gives lower execution time

22

Experiment Setup / Result (Raw-S)

« Same two kernel sets K1 and K10

 Train on a random 1000 kernels in K1, and test on all kernels in K10

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Count-based Prediction Accuracy

¥ Raw

M Raw-S

RandomForest

RandomForest

23

Applying GPU Expertise

« Loop order affects the degree of memory coalescing, thus
kernel performance

* \We can estimate # of DRAM transactions for each
memory access in the inner loop body
— Given the launch configuration

* A heuiristic for kernel performance: total memory
transactions from the inner loop body

24

Count-based Prediction Accuracy

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Experiment Result (All)

W Raw M Raw-S Heuristic

RandomForest

RandomForest

25

What We Learnt

Machine learning can be a fast, accurate solution to
auto-tuning,

If it is intelligently applied and integrated with our
generic knowledge about programs

26

Beyond the “Toy” Problem

Expand the optimization space to consider

Currently working on a 7-D optimization space,
with about ~50K valid configurations

Two challenges:
— Large program space
— Large optimization space

Collect kernel performance data for all configurations?
Train a performance predictor?
Compare ML performance against Oracle?

27

Thank You!

Questions?

