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Why GPU Auto-Tuning?

» Optimization plays a critical role in better utilizing
GPU compute power

* Optimization effect heavily depends on GPU
architecture and other optimizations
— Difficult to select the best-performing optimization(s)

» Fast-paced architectural enhancements demand
frequent re-tuning



Why Machine Learning?

« Traditional approaches
— Analytical modeling (heuristic)
— Empirical search
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Outline

* Feasibility study
— Should loops be interchanged in image-processing
kernels?

 Conclusions and future work



Feasibility Study: Application Domain

* Auto-tuning for mobile GPUs
« Computational photography on smartphones

« Start with image processing applications



Feasibility Study

* Atypical image processing application

read image;

for (row = 0; row < img rows; ++row)

for (col = 0; col < img cols; ++col)

{

read image pixels at and around (row,col);
process image pixels;
write image pixel at (row,col);

}

write image;




Feasibility Study

* Atypical image processing application

Launch Configuration
read image; -

#pragma kernel main tblock (BY,BX) thread(TY, TX)
#pragma loop partition over tblock over thread
for (row = 0; row < img rows; ++row)
#pragma loop partition over tblock over thread
for (col = 0; col < img cols; ++col)
{
read image pixels at and around (row,col);
process image pixels;
write image pixel at (row,col);

}

“ Loop Order

write image; What should the loop order be given a launch configuration?
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Performance Impact of Loop Order
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Why Loop Order Matters?

Loop Order + Launch Configuration

<

Distribution of loop iterations among GPU threads

<

Image pixels accessed by concurrent GPU threads

¢

Degree of memory coalescing

<

Kernel Performance
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Learning Experiment Overview

Graining Progra@ New Program

Launch Loop Program Launch
Configuration Order Performance Features Configuration

Program
Features

Model

Preferred Loop Order
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Program Features

* What influences the preference of loop order?

— Degree of coalescing of each memory access
— Interleaved computation that hides access latencies
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First Experiment: Raw

* Model inputs:
- { I—i ’ Couter,i J Cinner,i’ OI:ST| } x N
— Launch configuration: BX, BY, TX, TY

— When loops interchanged, swap C_ .. and C,

outer inner

* Model output: kernel execution time

* Given a new kernel + a launch configuration
— Use model to predict execution time with both loop orders
— Choose the loop order that gives lower execution time
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Experiment Setup (Raw)

Synthetically generated kernels
— Each has two perfectly nested loops

— ... but differs in computation length and memory accesses in inner
loop body

Two kernel sets
— K1: 4000 single-epoch kernels
— K10: 4000 kernels with at most 10 epochs

Collect execution time of each kernel with 3 launch
configurations and both loop orders

— On NVIDIA Tesla M2070

— (TX, TY) = (32, 8), (8, 32), (2, 128); (BX, BY) = (360, 1)
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Experiment Setup (Raw)

« Two ML algorithms (regression)
— SVMLight (default over-fitting parameter, Gaussian kernels)
— Waffles RandomForest (160 trees, 4 attributes per tree)

 For each kernel set, train on a random 1000 kernels and
test on the remaining 3000 kernels

» How to evaluate prediction accuracy on the test set?

17



Evaluation Metric

« Count-based Prediction Accuracy

— % of test samples where the predicted loop order does give better
kernel performance

* Penalty-weighted Prediction Accuracy
— % of best performance achieved by predicted loop order
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Count-based Prediction Accuracy
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Penalty-weighted Prediction Accuracy
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Dealing with Large Program Space

Program space is inherently large

The number of input features in RAW grows with
program length (# of epochs)

Train one or more smaller models, each focusing
on a short program segment

Use program structure to link these models

— e.g., execution time of a series of code segments is
roughly the sum of per-segment execution times
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Second Experiment: Raw-S

Train on single-epoch kernels

* Model inputs:
- { I-i ’ Couter,i ’ Cinner,i! OFSTI }
— Launch configuration: BX, BY, TX, TY

— When loops interchanged, swap C_ .. and C,

outer inner

* Model output: kernel execution time

Given a new K-epoch kernel + a launch configuration

* Predict execution time with each loop order, by
— Using the model (K times) to predict execution time of each epoch
— Summing the per-epoch predicted time

« Choose the loop order that gives lower execution time
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Experiment Setup / Result (Raw-S)

« Same two kernel sets K1 and K10

 Train on a random 1000 kernels in K1, and test on all kernels in K10
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Applying GPU Expertise

« Loop order affects the degree of memory coalescing, thus
kernel performance

* \We can estimate # of DRAM transactions for each
memory access in the inner loop body
— Given the launch configuration

* A heuiristic for kernel performance: total memory
transactions from the inner loop body
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Count-based Prediction Accuracy
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What We Learnt

Machine learning can be a fast, accurate solution to
auto-tuning,

If it is intelligently applied and integrated with our
generic knowledge about programs
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Beyond the “Toy” Problem

Expand the optimization space to consider

Currently working on a 7-D optimization space,
with about ~50K valid configurations

Two challenges:
— Large program space
— Large optimization space

Collect kernel performance data for all configurations?
Train a performance predictor?
Compare ML performance against Oracle?
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Thank You!

Questions?



