ABC-Optimizer: An Affinity-Based Code Layout

Optimizer

1

Chen Ding! Rahman Lavaee Pengcheng Lit

LUniversity of Rochester

November 19, 2013

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 1/36

Background

@ Modern software often has a large amount of code.
o Interpreters, libraries, compilers

@ Dynamic execution pattern
e Especially if it is designed in a modular fashion

@ How to optimize code layout in order to exploit instruction locality?

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 2 /36

Code Layout Challenges

@ Because of the large instruction footprint, instruction misses occur
not only for the private L1 icache, but also in the unified cache at
lower levels and in TLB.

@ Dynamic features such as dynamic typing, meta-programming, and
runtime inspection make traditional compiler analysis less effective.

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 3 /36

inity-Based Solution

@ Group elements that are often accessed closed by (have reference
affinity).
@ Two parameters:

o Footprint distance between accesses (window size)
e The probability of co-occurrent accesses (co-occurrence confidence)

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 4 /36

Reference Affinity: Example

F G F H

e Four footprint windows of size two: {F, G}, {F,G,F}, {G,F}, and
{F,H}.
e Two footprint windows of size three: {F, G,F,H} and {G, F, H}.

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 5 /36

Reference Affinity: Co-Occurrence Confidence

F G F H

@ Defined for every window size, as:

AB.freq
max(A.freq, B.freq)

coco(A, B) =

@ In this example, for window size two:

3
COCO(F, G) = m = 3/4
COCO(F, H) = W - 1/4

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 6 /36

inity-Based Solution

Solution: /ncrementally group frequently co-occurred elements in
relatively small window sizes.

Leads to a hierarchical partition of elements.

It's fairly easy to linearize the hierarchical partition.

Reorder the layout

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 7 /36

Applying the Solution to the Problem of Code Layout

@ Functions are easy to reorder.
@ Trace collection can be done in different levels:

e Basic block level : unnecessary
o Function level : insufficient
o Call level (upon every function entry, and after every call site):

appropriate

November 19, 2013

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc

Single Pass Window Counting

@ The new algorithm computes the frequencies, for all window sizes up
to a window size limit, in a single pass.

@ Instead of growing each window at every point, we keep track of a
window list.

@ The window list is a two-level doubly linked list.

e Each upper level element is a partial window.
o Each lower level element is a function record.

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc

November 19, 2013 9 /36

/

Execution of the Algorithm on an Example Trace

F GF G F H I

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 10 / 36

Window Creation at Sampling Point

F GF G F H I

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 11 / 36

Window Growth

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 12 /36

Attempt for Window Growth

F GF G F H I

X

X

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 13 / 36

No Window Growth (Cleanup)

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 14 / 36

New Window creation at Sampling Point

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 15 / 36

No Window Growth (Cleanup)

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 16 / 36

Window Growth

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 17 / 36

Cleanup Record

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013

Cleanup Window and Add Window Counts

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 19 / 36

Window Growth

F GF G F H I

.
Kl
X

window size =2 window size = 3

2 2

GECHR
®» o YU

ooz Bk ko

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 20 / 36

Window Growth

F G F G F H I

-
window size =2 window size = 3 window size = 4
2 2
2
@ © OF "

ERaRSaE

u-

X

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 21 /36

Accumulating Graphs

window size = 2 window size = 3 window size = 4

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 22 / 36

Computing Affinity

window size = 2 window size = 3 window size = 4

FG.freq -1 FH.freq -1 Fl.freq
max(F.freq,G.freq) — max(F.freq,H.freq) — max(F.freq,l.freq)

GH.freq Gl.freq

max(G.freq,H.freq) =1 max(G.freq,l.freq) =1

HI.freq _
max(H.freq,l.freq) —

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013

23 / 36

Computing the Affinity Hierarchy

window size = 2 window size = 3 window size = 4

H I ’

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 24 /

Computing the Affinity Hierarchy

F GF G F H |

X X

HFGI

S

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 25 / 36

Time Complexity

e The algorithm runs in time O(6LW?) in the worst case.

e § : Sampling rate
e L : Length of the trace
o W : Maximum window size
@ In practice it performs much better.
o Higher sampling rate leads to bigger partial window lists.

November 19, 2013

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc

Implementation

@ We implemented this algorithm within an LLVM compiler pass.
@ To reduce the profiling cost, we use two threads

o Analyzer thread: Analyses the window list and grows it.
o Updater thread: Updates the frequency counts.

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 27 / 36

Speedup Evaluation: Python

@ Speedup results for Python (Google's unladen swallow benchmark)
@ Results are for sampling rate 0.001 and window size limit 15.
@ The interpreter has been trained with django.

n

1.1
|

speedup
1.05
1

1
O

n
O)__
o
N T N EC VOO A0V HLEDXVN OO QD O H
9083503 =3X0cx22=8950xxE|0 333202
S £23 C2LETOOGT |2 | [SIN] FEL LS
N = E g+ E0 02 1JEEXSL2L2ET T 55600 o
X% 1CE58 EgFEsoel50052230888c352
ETSA° Z22 SExX8 /0SS cQEBBB X
19 = C3TCY 303833285, a8
=03 o s g3ag= 522382 30
2 go©° = [S®w@ga<c gt <
®ES re o2 0] Egx5>
| © £ e S g
T E = < =3
o _! B
@
o

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 28 / 36

Speedup Evaluation: SPEC2006

@ Speedup results for SPEC2006 (Perl, GCC, and Go)
@ The programs have been trained with the provided training input.

F

O

perlbench.diffmail
perlbench.splitmail

€
<
Q
)
X
5]
o]
<
Q
<
5]
c
@
Qa
=
@
Q

Chen Ding, Rahman Lavaee, Pengcheng Li

]

gce.166
gce.200

gce.c_typecheck
gce.cp_decl

]

gce.expr
gcc.expr2
gce.g23
gcc.s04
gce.scilab

gobmk.13x13
gobmk.nngs
gobmk.score2
gobmk.trevorc
gobmk.trevord

o}
-
-

-
-

1.05

0.95

(LABC-Optimizer:

An Affinity-Based Code Layc

November 19, 2013

29 / 36

Sensitivity to Parameters

@ Speedup sensitivity with respect to the sampling rate

n
-
« B mako
B django
@ slowpickle
@ nqueens
O richards
— O fastpickle
- O regex_compile
(o
>
°©
3w
a <
n -
—
~
o
e le-05 le-04 0.001 0.01 0.1

sampling rate

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 30/ 36

Sensitivity to Parameters

@ Speedup sensitivity with respect to the window size limit

n
-~
« B mako
B django
@ slowpickle
@ nqueens
O richards
— O fastpickle
— | O regex_compi
(o
>
2
QL W
Q 2
n -
- |
~
o
o

5 10 15 20 25 30 35 40
window size limit

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 31/36

/ 36

32

Nwqob
206

youaqed

November 19, 2013

1siepjoidun
@ouanbasyoedun
dnuejs
safequeds
aJyudsmols
apjordunmols
apjoidmols

Wwv‘_mco:

' xebau

181 apoid

11p~apord

plad :ﬂ

apjoldisey
susenbu
Apoqu
oxew

dnuwem—qigjwiy

s
@
4
o
o
<]
O
=l
o1
@
©
o0
x
=
b=
<
=
<
@
B
£
=
o
<
O
o0
S
)

qusiuy
"1eoy

46

-1

obuelp
s|ea

£01gX

0.4
0.3

0.2
0.1
0.0

-0.1
-0.2
Rahman Lavaee, Pengche

@ Reduction in L1 instruction cache misses

c
.2
4
(g0}
=
()
>
L

©
(5]
]
™

swqgob
206
o™
youaqpad =
N
o
2
g
£
[
3
1S appaidun P4
2ouanbas soedun
dnirels
sakequieds m,
-
" aupdsmols m
% appoidunmols (&)
(V2] el
W apjoidmols m
— spureyou >
m xabal nm
S o =
8} 18I 9P =
~ ToIp~appord X
+ I
2 apjoidisey E
= suaanbu S
|n_nb Apoqu 2
= S
(o] oxew =
© _ 5
o~ dnwrem—qugluny &
- qusIuny £
b0
= yeoy} m.m
m obuelp g
< =l s|rea 2
o 8] 1 ki
) = go1zX 5
@ 9] =
> o &
—= T T ,
@© (] + N O o @« &
> s o o o o a
LLl b c
o
[}

Profiling Cost

@ Using two threads (analyzer and updater) significantly reduces the
profiling cost.

@ The profiling cost is almost independent of the sampling rate.

O nqueens
mako

0.00001 0.0001 0.001 0.01 0.1

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19

We presented a new efficient algorithm for exploiting reference affinity.

It combines the affinity information in all window sizes and all affinity
thresholds.

We found our algorithm effective at improving the performance of
Python interpreter,

and to a lesser extent the Perl interpreter.

The optimization does not cause significant slowdowns.

It is robust across different parameterizations of the algorithm.

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 35/ 36

Thank You! Any Questions?

Chen Ding, Rahman Lavaee, Pengcheng Li (LABC-Optimizer: An Affinity-Based Code Layc November 19, 2013 36 / 36

