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Telling the Future
Past is prologue.

• How do we know 
whether a block 
belongs in the cache?

• Look at patterns in 
past performance - 
make predictions.



Outline

• OPT - An optimal cache replacement 
policy.

• LRU and MRU: educated guesses.

• Is there a way to do better?

• Pacman Simulations

• Proof of Concept



OPT - An Optimal Cache 
Replacement Policy

• Replace the page that will not be used 
for the longest time.

• Pro - It is the best possible cache 
management policy.

• Con - requires knowing future 
memory requests.



OPT Stack
• Stack distance is smallest OPT cache that will have the 

block for a hit.

• (1)  Upward Movement:  Move to the top when called

• (2)  Downward Movement:  Vacancies filled by the 
element above it with the lowest locality.

• (3)  Tiebreaking:  Arbitrary (alphabetical)

      Trace | a b c a d b a d c d
------------|--------------------
OPT Stack 1 | a b c a d b a d c d
          2 |   a a c a a b a d c
          3 |     b b b d d b a a
          4 |         c c c c b b
------------|--------------------
 Stack Dist | ∞ ∞ ∞ 2 ∞ 3 2 3 4 2



What to Look For

• OPT distance for each reference at 
each use.

• Sometimes: clear linear patterns.



Hint Insertion

• Armed with this, each block can be 
flagged for LRU or MRU based on the 
predicted OPTD.

• OPTD  >  cache size:  Flag as MRU

• OPTD  <  cache size:  Flag as LRU



Example Patterns 
(applu)



Pattern Recognition with 
“grid regression”

• Run a linear 
regression on the 
points in each tile.

• Connect the tiles that 
contain the same 
linear patterns.



Pattern Prediction

• 3 Runs
• Baseline (1)
• Training (2)
• Real (3)

• Parameters
• Input size z
• Slope m
• Intercept b

• Scaling
• Proportional with z
• ∆Xi = Xi - X1

• ∆b3 = ∆b2 (∆z3/∆z2)

• m3 = avg(m1, m2)



Simulation Results
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(a) Swim, training on input 384 by 384 and testing on 384 by 384
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(b) Swim, training on input 256 by 256 and 384 by 384 and testing on
512 by 512
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(c) Swim, training on input 384 by 384 and testing on 200 by 737
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(d) Swim, training on input 256 by 256 and 384 by 384 and testing on
300 by 873

Figure 4. Pacman is tested on swim when the input size (b), array shape (c) and both (d) change. The executions in (a,b) use the same loop
splitting and the same breakpoints, so do the executions (c,d).

loops. Pacman obtains significant miss-ratio reduction over LRU,
11% to 24% for leslie3d and 0% to 26% for zeusmp.

The third program, bwaves, shows a large increase in the miss
ratio as a result of Pacman. The reason is that pattern analysis
produces false positives. For large set-associative cache, an over-
use of MRU accesses is not immediately harmful because the
chance is that the following accesses would visit somewhere else in
cache. For small cache sizes, however, the incorrect MRU accesses
may cause the eviction of high locality data and hence an increase
of the miss rate. We found that in all cases that Pacman increases
the miss ratio, the cache size is smaller than 1MB. In addition for
bwaves, the cross-input analysis finds a few common patterns.

4.5 Comparison to Dynamic Insertion Policy
The Dynamic Insertion Policy proposed by Qureshi et al. [20]
divides the cache into three sets: (1) a small set of cache blocks
dedicated to the LRU policy, (2) another small set of cache blocks
dedicated to a mostly-MRU policy called Bimodal Insertion Policy,
and (3) the majority of cache blocks which will follow whichever
of the first two policies is performing best at any point in time.

For workloads that are LRU-averse during any phase in their
execution, DIP can outperform LRU by adaptively choosing BIP.
For workloads that are LRU-friendly throughout, DIP consistently
allocates the majority of cache blocks to LRU, but can in rare

instances even be outperformed by LRU because of misses incurred
by BIP dedicated blocks.

For our comparisons, we implement DIP following the descrip-
tion in the original paper and selecting the parameters it mentioned:
a policy selection threshold of 1024 (so that the LRU set must have
1024 more misses than the BIP set in any time window to trigger
a policy switch to BIP), and ”bimodal throttle parameters” of 1/16,
1/32, and 1/64 (so that each BIP block randomly uses LRU instead
of MRU with this probability). The lowest miss rate between these
three options is always reported, although there is only small vari-
ation.

In the SOR workload outlined above, DIP gives nearly the same
miss rate as LRU because during the traversal of G, there are
a significant number of immediate reuses (causing misses in the
BIP blocks). While there are also low locality accesses, BIP never
outperforms LRU strongly enough to trigger a policy switch to BIP.
DIP does not reduce the number of misses in our test suite, with the
exception of zeusmp, for which it makes a significant reduction for
two of the cache sizes for each of the inputs shown in Figure 7. The
changes in all other programs are less than 1%. While DIP does
not improve the performance, it does not degrade it, which makes
a safe policy.

Pacman is a program level technique. It requires profiling anal-
ysis and program transformation. However, it is more precise in
that it can not only select the LRU/MRU policy for each reference
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(a) Streaming, training on SIZE=512 and testing on SIZE=512
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(b) Streaming, training on SIZE=256 and SIZE=512 and testing on
SIZE=1024
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(c) Mgrid, training on SIZE=25 and testing on SIZE=25
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(d) Mgrid, training on SIZE=24 and SIZE=25 and testing on SIZE=26
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(e) Applu, training on inputs 18 by 18 by 18 and testing on 18 by 18 by
18
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(f) Applu, training on inputs 12 by 12 by 12 and 18 by 18 by 18 and
testing on input 24 by 24 by 24

Figure 6. The improvements by Pacman and OPT over LRU

but can also mix the LRU/MRU policy for the same reference. The
LRU/MRU breakpoint is made sensitive to data size and cache size.
As a result, Pacman improves all but one program in the test suite.
To be fair, we did not tune DIP beyond the parameters specified in
the paper, and DIP was not developed with our tests, with the ex-
ception of swim. Swim was deemed “inherently LRU” as DIP was
not able to improve its performance [20]. At least for this program,
program-level assistance is likely useful to go beyond LRU and ap-
proach the level optimal caching.

4.6 Performance on Real Hardware
The x86 ISA provides non-temporal store instructions which can
bypass cache. They can write to memory without loading the cor-
responding cache line first. By storing data that does not have good
temporal locality, non-temporal write can avoid polluting the cache
and reduce the memory traffic. SSE4.1 adds a non-temporal read
instruction which is limited to write-combining memory area. For
regular data that resides in main memory, the non-temporal read
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(a) Leslie3d, training on input 31 by 31 by 2 and testing on 31 by 31 by
2
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(b) Leslie3d, training on inputs 21 by 21 by 2 and 31 by 31 by 2 and
testing on 41 by 41 by 3
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(c) Zeusmp, training on input 12 by 12 by 12 and testing on 12 by 12 by
12
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(d) Zeusmp, training on inputs 8 by 8 by 8 and 12 by 12 by 12 and testing
on 16 by 16 by 16
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(e) Bwaves, training on inputs 9 by 9 by 4 and 9 by 9 by 8 and testing on
9 by 9 by 8
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(f) Bwaves, training on inputs 9 by 9 by 4 and 9 by 9 by 8 and testing on
17 by 17 by 16

Figure 7. The improvements by Pacman and OPT over LRU

does not bypass the cache hierarchy [14]. There are also non-
temporal prefetch instructions on x86, but they do not provide the
full functionality of a non-temporal read.

With the partial support of cache management on x86, we can
evaluate our loop splitting and hint insertion technique on real
hardware, if all MRU accesses inserted by Pacman are writes. We
run our tests on a machine with an Intel Xeon E5520 processor.

The processor contains 4 symmetric 2.27GHz cores which share
an 8MB L3 cache. With Hyper-Threading enabled, the processor
can support up to 8 hardware threads.

Figure 8 shows the kernel of our test program. The outer loop
advances in time step. In each time step, the inner loop updates
each element of array A based on its old value. The inner loop is
parallelized with OpenMP. The size of array A is set to 12MB, thus
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Implementation Results
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With Hardware Prefetching Without Hardware Prefetching

for(t = 0; t < MAXITER; t++)
#pragma omp parallel for

for(i = 0; i < N ; i++)
A[i] = foo(A[i]);

Figure 8. An openmp example: the inner loop updates the array
element by element; the outer loop corresponds to the time step
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(a) Performance with hardware prefetching
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(b) Performance without hardware prefetching

Figure 9. The performance comparison on Intel Xeon E5520.

threads 1-4 are assigned to four physical cores, and threads 5-8 are
bound to four hyper-threads.

In Figure 9(a), the Pacman code is 1.19 times slower than the
original program when using 1 thread, despite the fact that it utilizes
the temporal locality in the outer loop. The reason is the higher
overhead of the non-temporal store instruction and possibly the
interference with hardware prefetching. At more than 2 threads,
however, Pacman is clearly better. At 8 threads, it reduces the
execution time by 32.4%. The results show the relation between
cache reuse and prefetching. When there is enough bandwidth,
prefetching is effective; when the bandwidth is saturated at high
thread counts, cache reuse becomes important.

Loop splitting by Pacman is also important. Without it, the per-
formance is as much as 47% lower than the original program. If we
turn off prefetching, Pacman assisted caching is uniformly benefi-

cial, with 17% improvement in one thread and 25% improvement
at 8 threads, as shown in Figure 9(b).

5. Related Work
Collaborative Caching Several previous solutions used locality
analysis (in particular, reuse distance analysis), either by a com-
piler [6, 22] or by profiling [5, 6, 13]. Reuse distance analysis was
used to distinquish between high locality and low locality data. To
preserve high locality data in cache, the mechanisms used included
placement hints [5, 6], evict-me tags [22] and cache partitioning
through page coloring [13]. The reuse distance shows inherent pro-
gram locality including the size of the working sets. It does not con-
sider the resource constraint, that is, the size of the available cache.
The OPT distance, on the other hand, considers both the program
locality and the available resource.

A series of recent studies showed that collaborative caching
can achieve optimal cache management using the OPT stack dis-
tance [9–11]. Gu and Ding proved that hints based on the OPT dis-
tance can obtain the effect of OPT on bypass and trespass cache [9].
Gu et al. showed the same result for the LRU-MRU cache [10] and
the priority LRU cache [11].

Gu and Ding suggested the use of the OPT distance at the
program level by classifying each reference either as LRU or
MRU [10]. The solution is not optimal if a reference has a mix of
short and long OPT distances. Beyls and D’Hollander also classi-
fied references as always MRU or always LRU (based on the reuse
distance) [6], which has the same drawback: The optimal hints had
to be re-inserted when the program input or the cache size changed.
A recent solution allowed the same hints to optimize for caches of
arbitrary size, but it required the program to add multiple bits of
priority information at each memory instruction and the cache to
check the priority at each access [11].

Pacman uses loop splitting to make cache hints adaptive across
program input and cache sizes. It addresses other problems that
arise in practice, including non-unit size cache blocks, limited as-
sociativity, and the interaction with prefetching and parallelization.

Reuse Distance Pattern Analysis Linear patterns have been used
to model how the reuse distance changes with the data size, either
for the whole program [27], each loop and function [15], or for
every instruction [7,8]. The reuse distance stays the same for data in
the same working set. The tasks of pattern analysis are to separate
accesses with different working sets and to predict the size of the
working set for a given input. The OPT distance changes for the
same working set. Pacman uses grid regression to separate different
patterns and at the same time fit a linear model for each pattern. It
predicts the cross-input pattern in a way similar to reuse distance
analysis [27].

Compiler Analysis Numerous compiler techniques can analyze
data reuse including the reuse distance. Beyls and D’Hollander
developed conditional hints, where a compiler inserts predicates
so to control the use of hints at run time [6]. Pacman uses OPT
distance. It is yet an open question whether OPT distance can be
statically analyzed. In addition, loop splitting in Pacman is less
costly since a predicate is evaluated at each loop section instead
of every access.

Hardware Solutions Cache can implement adaptive solutions en-
tirely in hardware with no visible overhead and with transparency
to the user program. Indeed, perhaps no modern cache is imple-
mented strictly as LRU. Many research systems have been devel-
oped to improve data placement and to combine different replace-
ment methods in a single cache. The number of papers is too many
to cite completely. In the evaluation section, we have discussed the
Dynamic Insertion Policy [18]. In all these cases, an execution his-
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for(t = 0; t < MAXITER; t++)
#pragma omp parallel for

for(i = 0; i < N ; i++)
A[i] = foo(A[i]);

Figure 8. An openmp example: the inner loop updates the array
element by element; the outer loop corresponds to the time step
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Figure 9. The performance comparison on Intel Xeon E5520.

threads 1-4 are assigned to four physical cores, and threads 5-8 are
bound to four hyper-threads.

In Figure 9(a), the Pacman code is 1.19 times slower than the
original program when using 1 thread, despite the fact that it utilizes
the temporal locality in the outer loop. The reason is the higher
overhead of the non-temporal store instruction and possibly the
interference with hardware prefetching. At more than 2 threads,
however, Pacman is clearly better. At 8 threads, it reduces the
execution time by 32.4%. The results show the relation between
cache reuse and prefetching. When there is enough bandwidth,
prefetching is effective; when the bandwidth is saturated at high
thread counts, cache reuse becomes important.

Loop splitting by Pacman is also important. Without it, the per-
formance is as much as 47% lower than the original program. If we
turn off prefetching, Pacman assisted caching is uniformly benefi-

cial, with 17% improvement in one thread and 25% improvement
at 8 threads, as shown in Figure 9(b).

5. Related Work
Collaborative Caching Several previous solutions used locality
analysis (in particular, reuse distance analysis), either by a com-
piler [6, 22] or by profiling [5, 6, 13]. Reuse distance analysis was
used to distinquish between high locality and low locality data. To
preserve high locality data in cache, the mechanisms used included
placement hints [5, 6], evict-me tags [22] and cache partitioning
through page coloring [13]. The reuse distance shows inherent pro-
gram locality including the size of the working sets. It does not con-
sider the resource constraint, that is, the size of the available cache.
The OPT distance, on the other hand, considers both the program
locality and the available resource.

A series of recent studies showed that collaborative caching
can achieve optimal cache management using the OPT stack dis-
tance [9–11]. Gu and Ding proved that hints based on the OPT dis-
tance can obtain the effect of OPT on bypass and trespass cache [9].
Gu et al. showed the same result for the LRU-MRU cache [10] and
the priority LRU cache [11].

Gu and Ding suggested the use of the OPT distance at the
program level by classifying each reference either as LRU or
MRU [10]. The solution is not optimal if a reference has a mix of
short and long OPT distances. Beyls and D’Hollander also classi-
fied references as always MRU or always LRU (based on the reuse
distance) [6], which has the same drawback: The optimal hints had
to be re-inserted when the program input or the cache size changed.
A recent solution allowed the same hints to optimize for caches of
arbitrary size, but it required the program to add multiple bits of
priority information at each memory instruction and the cache to
check the priority at each access [11].

Pacman uses loop splitting to make cache hints adaptive across
program input and cache sizes. It addresses other problems that
arise in practice, including non-unit size cache blocks, limited as-
sociativity, and the interaction with prefetching and parallelization.

Reuse Distance Pattern Analysis Linear patterns have been used
to model how the reuse distance changes with the data size, either
for the whole program [27], each loop and function [15], or for
every instruction [7,8]. The reuse distance stays the same for data in
the same working set. The tasks of pattern analysis are to separate
accesses with different working sets and to predict the size of the
working set for a given input. The OPT distance changes for the
same working set. Pacman uses grid regression to separate different
patterns and at the same time fit a linear model for each pattern. It
predicts the cross-input pattern in a way similar to reuse distance
analysis [27].

Compiler Analysis Numerous compiler techniques can analyze
data reuse including the reuse distance. Beyls and D’Hollander
developed conditional hints, where a compiler inserts predicates
so to control the use of hints at run time [6]. Pacman uses OPT
distance. It is yet an open question whether OPT distance can be
statically analyzed. In addition, loop splitting in Pacman is less
costly since a predicate is evaluated at each loop section instead
of every access.

Hardware Solutions Cache can implement adaptive solutions en-
tirely in hardware with no visible overhead and with transparency
to the user program. Indeed, perhaps no modern cache is imple-
mented strictly as LRU. Many research systems have been devel-
oped to improve data placement and to combine different replace-
ment methods in a single cache. The number of papers is too many
to cite completely. In the evaluation section, we have discussed the
Dynamic Insertion Policy [18]. In all these cases, an execution his-
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Conclusions

• PACMAN works well with loop-based 
code.

• Fine grained: caching choice at every 
instruction.

• PACMAN is a good choice if training 
runs are an option.


