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Telling the Future
Past is prologue.

e How do we know o
whether a block \@}’
belongs in the cache?

e LLook at patterns in
past performance -
make predictions.




Outline

e OPT - An optimal cache replacement
policy.

e LRU and MRU: educated guesses.

e Is there a way to do better?

e Pacman Simulations

e Proof of Concept




OPT - An Optimal Cache
Replacement Policy

e Replace the page that will not be used
for the longest time.

e Pro - It is the best possible cache
management policy.

e Con - requires knowing future
memory requests.




OPT Stack

Stack distance is smallest OPT cache that will have the
block for a hit.

(1) Upward Movement: Move to the top when called

(2) Downward Movement: Vacancies filled by the
element above it with the lowest locality.

(3) Tiebreaking: Arbitrary (alphabetical)

Stack Dist



What to Look For

e OPT distance for each reference at
each use.

e Sometimes: clear linear patterns.



Hint Insertion

e Armed with this, each block can be
flagged for LRU or MRU based on the
predicted OPTD.

e OPTD > cache size: Flag as MRU
e OPTD < cache size: Flag as LRU




Example Patterns
(appluw)
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Pattern Recognition with
“grid regression”

e Run a linear
regression on the
points in each tile.

e Connect the tiles that
contain the same
linear patterns.




Pattern Prediction

e 3 Runs
e Baseline (1)
e Training (2)
e Real (3)

e Parameters
e Input size z
e Slopem
e Interceptb

e Abz = Aba (Azz/Az2)

e msz=avg(mi, mya)

e Scaling
e Proportional with z
o AX;=X;-X;



Simulation Results
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(a) Swim, training on input 384 by 384 and testing on 384 by 384 (b) Swim, training on input 256 by 256 and 384 by 384 and testing on
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(c) Swim, training on input 384 by 384 and testing on 200 by 737 (d) Swim, training on input 256 by 256 and 384 by 384 and testing on
300 by 873




Simulation Results
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(c) Mgrid, training on SIZE=2° and testing on SIZE=2° (d) Mgrid, training on SIZE=2% and SIZE=2" and testing on SIZE=26
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(e) Applu, training on inputs 18 by 18 by 18 and testing on 18 by 18 by  (f) Applu, training on inputs 12 by 12 by 12 and 18 by 18 by 18 and
18 testing on input 24 by 24 by 24




Simulation Results
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(a) Leslie3d, training on input 31 by 31 by 2 and testing on 31 by 31 by  (b) Leslie3d, training on inputs 21 by 21 by 2 and 31 by 31 by 2
2 testing on 41 by 41 by 3
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(c) Zeusmp, training on input 12 by 12 by 12 and testing on 12 by 12 by  (d) Zeusmp, training on inputs 8 by 8 by 8 and 12 by 12 by 12 and testing
12 on 16 by 16 by 16




Implementation Results

for(t=0;t < MAXITER;t+ +)
#pragma omp parallel for

f OT(i =050 < Nju+ ‘|‘) Figure 8. An openmp example: the inner loop updates the array
A[Z] = f OO(A[i] ); element by element; the outer loop corresponds to the time step
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Conclusions

e PACMAN works well with loop-based
code.

e Fine grained: caching choice at every
instruction.

e PACMAN is a good choice if training
runs are an option.




