Program Assisted
Cache Management

Jacob Brock, Xiaoming Gu,
Chen Ding, Bin Bao

Telling the Future
Past is prologue.

e How do we know o
whether a block \@}’
belongs in the cache?

e LLook at patterns in
past performance -
make predictions.

Outline

e OPT - An optimal cache replacement
policy.

e LRU and MRU: educated guesses.

e Is there a way to do better?

e Pacman Simulations

e Proof of Concept

OPT - An Optimal Cache
Replacement Policy

e Replace the page that will not be used
for the longest time.

e Pro - It is the best possible cache
management policy.

e Con - requires knowing future
memory requests.

OPT Stack

Stack distance is smallest OPT cache that will have the
block for a hit.

(1) Upward Movement: Move to the top when called

(2) Downward Movement: Vacancies filled by the
element above it with the lowest locality.

(3) Tiebreaking: Arbitrary (alphabetical)

Stack Dist

What to Look For

e OPT distance for each reference at
each use.

e Sometimes: clear linear patterns.

Hint Insertion

e Armed with this, each block can be
flagged for LRU or MRU based on the
predicted OPTD.

e OPTD > cache size: Flag as MRU
e OPTD < cache size: Flag as LRU

Example Patterns
(appluw)

OPT distance

[
o
=
5]
i)
2
©
l_
o
(e}

10000 15000 20000 50000 100000 150000 200000 250000 300000 350000
iteration index (130560 points) iteration index (130560 points)

Pattern Recognition with
“grid regression”

e Run a linear
regression on the
points in each tile.

e Connect the tiles that
contain the same
linear patterns.

Pattern Prediction

e 3 Runs
e Baseline (1)
e Training (2)
e Real (3)

e Parameters
e Input size z
e Slopem
e Interceptb

e Abz = Aba (Azz/Az2)

e msz=avg(mi, mya)

e Scaling
e Proportional with z
o AX;=X;-X;

Simulation Results

Bl Pacman
W OPT '
8MB

over LRU
over LRU

(%) Cache Miss Reduction
(%) Cache Miss Reduction

Bl Pacman
B OPT
2MB 4MB 8MB

1MB 2MB 4MB 16MB

Cache Sizes Cache Sizes

(a) Swim, training on input 384 by 384 and testing on 384 by 384 (b) Swim, training on input 256 by 256 and 384 by 384 and testing on

512 by 512
Bl Pacman Bl Pacman
W OPT ' W OPT
8MB 2MB 4MB 8MB

1MB 2MB AMB 16MB
Cache Sizes Cache Sizes

over LRU
over LRU

(%) Cache Miss Reduction
(%) Cache Miss Reduction

(c) Swim, training on input 384 by 384 and testing on 200 by 737 (d) Swim, training on input 256 by 256 and 384 by 384 and testing on
300 by 873

Simulation Results

W Pacman
W OPT

¢JJJ JJJ

128KB 256KB 512KB 0.5MB 1MB
Cache Sizes Cache Sizes

Bl Pacman
H OPT

over LRU
over LRU

(%) Cache Miss Reduction

c
Q
=
o
>
S
o}
o
0
R
=
o
<
S
®
©)
—_
2
N

(c) Mgrid, training on SIZE=2° and testing on SIZE=2° (d) Mgrid, training on SIZE=2% and SIZE=2" and testing on SIZE=26

Il Pacman
W OPT

Bl Pacman
H OPT

Jﬂ' .IJJ

256KB 512KB 1MB 1MB
Cache Sizes Cache Sizes

over LRU
over LRU

(%) Cache Miss Reduction
(%) Cache Miss Reduction

(e) Applu, training on inputs 18 by 18 by 18 and testing on 18 by 18 by (f) Applu, training on inputs 12 by 12 by 12 and 18 by 18 by 18 and
18 testing on input 24 by 24 by 24

Simulation Results

11a: 1114

256KB 512B 1MB 0.5MB 1MB
Cache Sizes Cache Sizes

Bl Pacman
H OPT

over LRU
over LRU

(%) Cache Miss Reduction

C
Q
=

o

>
S

o}
o

[}
L2
=

o
<

3}

®
@)

R

(a) Leslie3d, training on input 31 by 31 by 2 and testing on 31 by 31 by (b) Leslie3d, training on inputs 21 by 21 by 2 and 31 by 31 by 2
2 testing on 41 by 41 by 3

ﬂu]

256KB 512B 1MB 0.5MB 1MB 2MB 4MB

Cache Sizes Cache Sizes

over LRU
over LRU

(%) Cache Miss Reduction
(%) Cache Miss Reduction

(c) Zeusmp, training on input 12 by 12 by 12 and testing on 12 by 12 by (d) Zeusmp, training on inputs 8 by 8 by 8 and 12 by 12 by 12 and testing
12 on 16 by 16 by 16

Implementation Results

for(t=0;t < MAXITER;t+ +)
#pragma omp parallel for

f OT(i =050 < Nju+ ‘|‘) Figure 8. An openmp example: the inner loop updates the array
A[Z] = f OO(A[i]); element by element; the outer loop corresponds to the time step

B Regular R B Regular
B Non-temporal B Non-temporal
B Non-temporal+Splitting " B Non-temporal+Splitting

L0
™
Q
™
L0
W\
o
Qi
10
h el
Q
~—
L0
o
Q
o

Thread number Thread number

With Hardware Prefetching Without Hardware Prefetching

Conclusions

e PACMAN works well with loop-based
code.

e Fine grained: caching choice at every
instruction.

e PACMAN is a good choice if training
runs are an option.

