
Implementation and Optimization of
Thread-Local

Variables for a Race-Free Java Dialect

Yi Zhang, Clark Verbrugge
McGill University

Structure

Overview & Motivation

Design

Implementation

Experiments

Conclusion & Future Work

Overview

implement and optimize thread local access

a new semantic for Java

race-free version of Java

Motivation

Complexity in racy program

hard to validate the optimization

many optimizations are prohibited

data-race free property

Motivation

data are thread local by default and use
shared directives for shared data

ThreadLocal class in Java API

thread-local access

Design
ThreadLocal

objects as wrapperOriginal Design
ThreadLocal objects as wrapper

access data:
get(), set()

Design

Original Design

each thread holds a ThreadLocalMap

First, get map from thread

Second, <ThreadLocal as key, value>

Design

Our Design

thread-local the default option

use “volatile” to specify the shared data

Design
Our Design

thread-local the
default option

Design
Our Design

use “volatile” to specify
the shared data

accesses of data

Design
Original New

semantic thread-local is not inherent
need support from
ThreadLocal class

thread-local is inherent with in
semantics

data
access

map searching static: table look-up based
approach

non-static: normal access
without overhead

initial
value

fixed initial value
manually and statically

inherent initial value from
parents

automatically and at run-time

Implementation
Thread Local Accesses

at the start of thread, make local copy all reachable
reference objects if that field is not volatile

Class.staticField this.field

shared with all
threads

shared with
parent threads

we do this through deep-copying

static fields

objects reachable
from static fields

objects reachable
from parent thread

Implementation

Implementation

static fields

Implementation

objects reachable
from static fields

Implementation

objects reachable
from non-static fields

Implementation

Implementation

Implementation

Implementation

Implementation

Implementation

Implementation
table look-up based mechanism to speed up

Object Object copy for
thread 1

A.localItem A.localItem

Object copy for
thread 2

A.sharedItem

global table local table local table

Experiments

Implementation Environment:

JikesRVM 3.1.1

Micro Benchmarks:

Reads and writes operations on
thread-local static field

Experiments
Micro Benchmarks

Experiments
Micro Benchmarks

Experiments

gc time of new design
increases faster !!

We need special
garbage collector

adapted to our dialect

Micro Benchmarks

Experiments
Micro Benchmarks

Experiments
Non-trivial Benchmarks:

Sable Research Group:
Sun Java Tutorial:

Doug Lea:
Java Grande Forum Benchmark Suite:

SPECJVM98:
series

Producer/Consumer (P/C)

traffic, roller coaster

bank

mtrt

Experiments
Non-trivial Benchmarks

most benchmarks shows
comparable performance

traffic benchmarks runs
considerably slower

289 threads->too
many

Conclusion & Future Work

Conclusion

Data-Race-Free

thread-local data VS shared data

thread-local and Java Virtual Machine

Conclusion & Future Work

Future Work

Full data-race-free language design

Improve performance of current design

reduce the copying overhead

reduce gc time

Thank You!

	Implementation and Optimization of Thread-Local�Variables for a Race-Free Java Dialect��
	 Overview
	Motivation
	Motivation
	 Design
	 Design
	 Design
	 Design
	 Design
	 Design
	 Implementation
	 Implementation
	 Implementation
	 Implementation
	 Implementation
	 Implementation
	 Implementation
	 Implementation
	 Implementation
	 Implementation
	 Implementation
	 Implementation
	 Experiments
	 Experiments
	 Experiments
	 Experiments
	 Experiments
	 Experiments
	 Experiments
	 Conclusion & Future Work
	 Conclusion & Future Work
	 Thank You!

