

Abstract Analysis
of

Method-Level Speculation
Clark Verbrugge
McGill University

Allan Kielstra
IBM Toronto Lab

Christopher J.F. Pickett
McGill University

Compiler-Driven Performance, November 10, 2011

Contents

● Essential background
● Modeling MLS

– In-order, out-of-order, nested
– Signaling

● Abstraction
● Experiments
● Conclusion and future work

Compiler-Driven Performance, November 10, 2011

Background

● Method-Level Speculation

Compiler-Driven Performance, November 10, 2011

Background

● Method-Level Speculation

Compiler-Driven Performance, November 10, 2011

Background

● Issues
– Safety: validate speculative thread
– Overhead

● Forking
● Joining & validating
● Speculative isolation

– Parallel work
● Length of method, continuation
● Misspeculation
● Fork points

Compiler-Driven Performance, November 10, 2011

Background

● Existing systems
– Focus on data dependencies
– Careful heuristics
– Context-specific
– Varying performance...

● Why?
– Feedback; resource-limited.
– Speculative “style” vs code

Compiler-Driven Performance, November 10, 2011

Modeling MLS

● MLS Constraint Graph

A() {
 work1
 B()
 work2
}

B() {
 work3
 C()
 work4
}

C() {
 work5
}

A() {
 work1
 B()
 work2
}

Compiler-Driven Performance, November 10, 2011

Modeling MLS

● MLS Constraint Graph

A() {
 work1
 B()
 work2
}

B() {
 work3
 C()
 work4
}

C() {
 work5
}

Execution: A → w1 → B → w3 → C → w5 → w4 → w2 → 0

A() {
 work1
 B()
 work2
}

Compiler-Driven Performance, November 10, 2011

Modeling MLS

● MLS Constraint Graph

A() {
 work1
 B()
 work2
}

B() {
 work3
 C()
 work4
}

C() {
 work5
}

Execution: A → w1 → B → w3 → C → w5 → w4 → w2 → 0

A() {
 work1
 B()
 work2
}

Continuation edges

Compiler-Driven Performance, November 10, 2011

Modeling MLS

● All possible MLS executions
A → w1 → B → w3 → C → w5 → w4 → w2 0

Compiler-Driven Performance, November 10, 2011

Modeling MLS

● All possible MLS executions
A → w1 → B → w3 → C → w5 → w4 → w2 0

A → w1 → B → w3 → C → w5 → w4 w2 → 0

Compiler-Driven Performance, November 10, 2011

Modeling MLS

● All possible MLS executions
A → w1 → B → w3 → C → w5 → w4 → w2 0

A → w1 → B → w3 → C → w5 → w4 w2 → 0

A → w1 → B → w3 → C → w5 w4 → w2 → 0

Compiler-Driven Performance, November 10, 2011

Modeling MLS

● All possible MLS executions
A → w1 → B → w3 → C → w5 → w4 → w2 0

A → w1 → B → w3 → C → w5 → w4 w2 → 0

A → w1 → B → w3 → C → w5 w4 → w2 → 0

A → w1 → B → w3 → C → w5 → w4 → w2 → 0

Compiler-Driven Performance, November 10, 2011

Modeling MLS

● Speculation Styles
– Usually more than 1 speculative thread

● Out-of-order
– Create multiple spec children from a thread

● In-order
– Spec children can create spec children

● Nested
– Both

Compiler-Driven Performance, November 10, 2011

Modeling MLS

● Signaling Disciplines
– Support thread reuse

● Forward-signaling
– Parent signals child to stop
– Improves parallelism, mostly for out-of-order

● Backward-signaling
– Child signals parent
– Improves parallelism, mostly for in-order

● But must retain child states

Compiler-Driven Performance, November 10, 2011

Modeling MLS

● Assume T = SABC
– S is the sequential preamble
– A method body
– B continuation (pre-join)
– C continuation (post-join)

● Full formula:
MLS(T=SABC) = S ; MLS(A) | MLS(B) + MLS(C)

Compiler-Driven Performance, November 10, 2011

Abstraction
T = t

1
,t

2
, …, t

n

MLS(T,d,time) =
 for all S = preamble(T,d) s.t. time(S) < time
 let (t

|S|+1
,t

b
) be a continuation edge

 T
A
 = t

|S|+1
, …, t

b-1

 for all d
1
,d

2
 = d-1,0 // out-of-order

 0,d-1 // in-order
 split(d-1) // nested
 for all A = MLS(T

A
,d

1
,time-time(S)-F)

 T
B
 = t

b
, …, t

n

 for all B = MLS(T
B
,d

2
,time(A))

 T
C
 = t

|S|+|A|+|B|+1
, …, t

n

 time(S;A|B) = time(S) + F + max(time(A),time(B)) + J
 for all C = MLS(T

C
,d,time-time(S;A|B))

 time(T) = time(S;A|B) + time(C)
 return S ; A | B + C

Compiler-Driven Performance, November 10, 2011

Abstraction

● Exhaustive analysis
– Model in-order, out-of-order, nested

● Show maximum parallel potential
– Interaction of spec design and code
– Assume no misspeculation

● Adds overhead, reduces available threads

Compiler-Driven Performance, November 10, 2011

Experiments

● Basic coding idioms
– Iteration

● for(...) { work(); } (10 iters)

– Head-recursion
● head() { head(); work(); } (10 levels)

– Tail-recursion
● tail() { work(); tail(); } (10 levels)

– Tree-add: double head-recursion
● ta() { ta(); ta(); work; } (3 levels)

Compiler-Driven Performance, November 10, 2011

Experiments

● Abstract time units
– Method-call: 5 units
– Fork: 5 units
– Join: 20 units
– Work: 1000 units

● Maximal parallelism; no misspeculation

Compiler-Driven Performance, November 10, 2011

Experiments

● Measurements
– Speedup

● In-order, out-of-order, nested (forward-signaling)
● Max, average, “greedy” fork heuristic

– Weight sensitivity
● Scale fork/join overhead 0...10000 units
● (not shown)

– Code structure
● Simple code changes

Compiler-Driven Performance, November 10, 2011

Experiments: Speedup

Compiler-Driven Performance, November 10, 2011

Experiments: Speedup

Compiler-Driven Performance, November 10, 2011

Experiments: Speedup

Compiler-Driven Performance, November 10, 2011

Experiments: Speedup

Compiler-Driven Performance, November 10, 2011

Experiments: Structure

● Greedy forking
● Prefix:

– prefix() { work; }; benchmark();
● Wrap:

– wrap { benchmark(); work; }
● Suffix:

– benchmark(); suffix() { work; }

Experiments: Structure

Compiler-Driven Performance, November 10, 2011

Experiments: Structure

Compiler-Driven Performance, November 10, 2011

Conclusions

● Improve understanding of TLS
– Interaction of speculation-style and code
– Feedback properties

● Abstraction
– Exhaustive analysis
– Greedy behaviour

● Step to further abstraction

Compiler-Driven Performance, November 10, 2011

Future Work

● Examine other factors
– Misspeculation due to data-dependencies
– Non-spec instructions
– Backward-signaling; mixed signaling
– Different fork heuristics

● Real program workloads
● Basis for new fork heuristics

Compiler-Driven Performance, November 10, 2011

Done!

● Questions?

Compiler-Driven Performance, November 10, 2011

Experiments: Weight

Compiler-Driven Performance, November 10, 2011

Experiments: Structure

Compiler-Driven Performance, November 10, 2011

Experiments: Structure

Compiler-Driven Performance, November 10, 2011

