Applying Flow Graph Mining to the
Performance Analysis of Flat Profile
Applications

Carolina Simoées Gomes and Jose Nelson Amaral
Department of Computing Science, University of Alberta, Canada.
Li Ding, Arie Tal and Joran Siu

IBM Toronto Lab, Canada.

F

Motivation

Analyze profiled
« data

L)

Optimization

Develop compiler| | cycle for rganize
optimizations compiler ollected profiles
developers

Compile
application with ‘
optimizations

\xx_\

F

Motivation

Analyze profiled
« data

Optimization
(Re)write cycle for rganize
~ application application ollected profiles
source code developers
(Re)compile
application

Y 4

Motiva

e =8

tion

Problem Statement

« How to facilitate the performance analysis of flat-profile
applications?

Problem Statement

« How to facilitate the performance analysis of flat-profile
applications?

« More specifically: how to automate the search for
execution patterns in flat-profile applications, that may
indicate the need for optimization?

Problem Statement

« How to facilitate the performance analysis of flat-profile
applications?

« More specifically: how to automate the search for
execution patterns in flat-profile applications, that may
indicate the need for optimization?

 Optimization may be at different levels, e.g. hardware

architecture, code generation, application source-code
7

ldea

Problem:

Mine for frequent patterns of execution in a program

ldea

Problem: RS Possible Solution:
Mine for frequent Mine for frequent
patterns of execution sub-graphs in a flow

In a program graph

Fundamental Concepts

 Execution pattern: set of attributes that characterize
distinct executed regions of the program

 Program regions that map to a pattern are called pattern
instances

 Two program regions that contain the same attributes are
two instances of the same pattern

10

Fundamental Concepts

What makes a pattern interesting?
Support value: measure of how interesting the pattern is

Frequent execution pattern: a pattern that has a support
value higher than a threshold. The support value of a
pattern is calculated from all its instances

11

Execution Flow Graph

Possible attributes: a, b, c, d Edge frequency: how

20 oftenitis executed

L(v) : node label, an
unique identifier for

the node
50

/ a(10)
Node weight: b(20) \, Attributes that
time spent EKE_CUti"Q characterize the node,
the node (e.g. in clock and corresponding
ticks) attribute values

(single value per

attribute)
12

Execution Flow Graph

* Generic representation that
places together static and
dynamic data

« Can be adapted to different
mining granularities

13

Solution: FlowGSpan
Based on gSpan (Yan and Han, 2002) and FlowGSP
(Jocksch et al., 2010)

Mines for sequential execution patterns (sub-paths) and
execution patterns with branches (sub-graphs)

Maps frequent patterns to pattern instances

Uses support criteria based on attributed, weighted nodes
and weighted edges

14

Support Criteria

Weight support (Sw)
Frequency support (Sf)
Support value (Sm = max{Sw, Sf})

Anti-monotonicity property

15

Support Crlterla

| 14
Pattern ;?3]
a[1l‘.‘l] "
b(s), oo
|nst1 inst2
10
b hlﬁl b(8)
h[2] d(5)
T 6
Swi(inst1) = min{ w(v1), w(v2), w(v3)} 20 10
Sw(inst2) = min{ w(v1), w(v2), w(v3) } 3[15] a(2)
Sw(Pattern) = 10 c(3)
{ Sw(inst1) + Sw(inst2))/total_weight
. . 20 total_weight = 150
Sf(inst1) = min{ f(v1, v2), f(v1, v3) } - ~
Sf(inst2) = min{ f(v6, v7), f(v6, v8) } b(4) e total_freq = 80

Sf(Pattern) =
(Sf(inst1) + $f(inst2))/total_freq Dataset

FlowGSpan Example

 Procedure:

— generation of candidate sub-graph g of size k by
combining possible attributes

- matching of g on dataset

- support value calculation of matches of g

— comparison of support value of g against threshold
- if g is not frequent, discard it

- else extend g by adding an edge to it, that can either
be connected to a new node or to a node already
N g 17

FlowGSpan Example

o Support threshold (minSup): 0.1
 Possible attributes: a, b, c, d

« Dataset size: 2 (in number of EFGs)

18

FlowGSpan Example

0-edge sub-graphs

. Sw = (10+15+3+2)1150 = 0.2 gﬁm]

5f=0
b(5
Sm=max{0.2,0}=0.2 ®)

b
Sw = (5+2+5+4+6)/150=0.15
. 5f=0 20
c Sm=0.15 10 b(5)
Sw = 0.04 b(2) d(®)
. Sf=0
Sm=0.04
d
Sw=10.09
5f=0
Sm=0.09

total_weight = 150
total_freq =80

FlowGSpan Example

0-edge sub-graphs

. Sw = (10+15+3+2)/150 = 0.2 gﬁm]

Sm=max{0.2,0}=0.2

Sw = (5+2+5+4+6)/150 = 0.15
8f=0

Sm=0.15 10

b
c
Sw=0.04 b(2)
5f=0
Sm=0.04
d
i Sw=10.09

5f=0
Sm=0.09

total_weight = 150
total_freq =80

0-edge sub-graphs

.
X
i
a,.h

FlowGSpan Example

Sw = (10+15+3+2)1150=0.2 :Em]
5f=0

b(5
Sm=max{0.2,0}=0.2 ®)
Sw = (5+2+5+4+6)/150 = 0.15

Sf=0 20 10
Sm=0.15 10 b(5) d(8)
Sw = 0.04 b(2) d(s)

5f=0
Sm=0.04

10
a(2)
c(3)

Sw=10.09
5f=0
Sm=0.09

total_weight = 150

Sw=5/150=0.03 total_freq =80

5f=0
Sm=0.03

21

FlowGSpan Example

0-edge sub-graphs

. Sw = (10+15+3+2)/150 = 0.2 gﬁm]
Sm=max{0.2,0}=0.2

Sw = (5+2+5+4+6)1150 = 0.15

Sf=0

Sm=0.15 10

b

c
Sw=0.04 b(2)
5f=0

d

b

10
a(2)
c(3)

Sw=10.09
5f=0
Sm=0.09

Sm=0.04

a!

Sw=5/150=0.03
5f=0

Sm=0.03

total_weight = 150
total_freq =80

22

FlowGSpan Example

1-edge sub-graphs

Sw = (2+5+4+3)/150 = 0.09 :Em]

5f = (4+6+10+7)/80 = 0.3 b(5)
Sm=max{0.09,0.3} =03

a(15)
Sm =max{0.06, 0.2} =0.2

20 total_weight = 150

b(4) total_freq = 80

a b
MNode pool: . .

Sw=(2¢5)150=005 | o

Sf = (4+6)/80 = 0.13

Sm = max{0.05, 0.13} = 0.13
Sw=(2+5+2)1150=0.06 9
Sf = (4+6+7)/80 = 0.2

23

FlowGSpan Example

For 2-edge sub-graphs onwards...

Approach based on gSpan: edge-by-edge pattern-growth
(extends sub-graph by testing all combinations from
frequent node pool)

Optimized approach: edge combination

Sub-graph matching issue: restarting search for every
candidate sub-graph

24

FlowGSpan Example

Core optimization: registration of pattern instances

Pattern a ' Registered parent 3[3]

pattern instances | cl4

10
d(8)

20
b(5)
b(2) > d(5)

New {edge, node} 10

pair added 20
a(15) 312]
c(3)
20 total_weight = 150
b(4) total_freq = 80
Dataset

25

Application: targeting compiler
developers

Implemented FlowGSpan to g represents

mine for sets of hardware profiled program method _ Contral flow
20 edge frequency
events -> Dataset represents all
profiled program methods o L{v): instruction
Matching is exact address
50
Tested on DayTrader o -m{ ;{(12001]
: ode weight: time
beChmark, Wh|Ch was JITted spent executing Attributes are hardware
and profiled on IBM's z196 instruction (n ticks events captured by
. . rf t
mainframe architecture (o3, branch miss cache
miss) and values are time
Compared against optimized spent with attribute true
FlowGSP (with added pattern »

iInstance registration)

Application: targeting compiler
developers

Number of Patterns Found

140

120

100

80

Comparison of Patterns Found (FlowGSP vs FlowGSpan)

(Each bar is a threshold)

23 36

Dataset Size (in number of EFGs)

132

B 0 5%(Flow GSP-opt)

B 0.6%(Flow GSP-opt)

[1%(Flow GSPopt)

M 0.5%(Fow GSpan-locreg)
M (6% (Fow GSpan-locreg)
O 1%(How GSpan-locreg)

27

Run-time (in minutes)

Application: targeting compiler
developers

Run-time Comparison (FlonGSP v FlowGSpan)
(Bach ber is athreshold)

&0
01e
700
=00
500 B 0.5 (Flow GSPoph)
B 0 6% (Fow GERoph)
O 134Flow GEP-ogt)
400 o B 0 54(Fow CSpan-ot reg)
- B 0 624(Fow GSpan-oc reg)
a0 O 1%Fow GSpard acred)
200
1253606 1Ze3
SEETFEIRER
100 BB e T2 = oreaET
0 2107 QoossesET 080215 21578 20214 1890 AT5 3447 2554ERE
Z3 36 58

Dataset Sz (in number of BFGs)

28

Application: targeting application
developers

* Implementing FlowGSpan to mine for higher-level
patterns (“source-code patterns”)

 |dea: flow graph mining at basic block level

« Challenges:
- How to define basic block similarity?

- Approximate matching of patterns

- How to map from patterns to corresponding
source lines?

29

Conclusion

FlowGSpan: an algorithm that performs attributed sub-
graph mining in Execution Flow Graphs

FlowGSpan can be adapted according to the semantics of
the dataset of Execution Flow Graphs to be mined

Efficient implementation is fundamental to achieve
acceptable performance when mining real-world, multi-GB
datasets

Large business applications can greatly benefit from
automated performance analysis using FlowGSpan
30

Questions?

31

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

