Predicting Negative Cache Interference with
Composable Application-Centric Models

Xiaoya Xiang, Bin Bao, Tongxin Bai,
Chen Ding, Trishul Chilimbi

Qutline

Introduction
Background
Approximate all-window footprint

Cache interference prediction

Evaluation

Summary

Introduction

Applications are increasingly run in shared cache

Asymmetrical effect on performance due to cache
sharing

® equake(<20%) vs vpr(82%)

Traditional metrics cannot easily explain the
asymmetry

Footprint may help

Background

® What is footprint?

® Given an execution window in a trace, the footprint is the
number of distinct elements accessed in the window

@
example kmmnnn

® compared to reuse distance

® the number of distinct data elements accessed between this
and the previous access to the same data

Background

® What is footprint?

® Given an execution window in a trace, the footprint is the
number of distinct elements accessed in the window

@
example [Ik mjm "N

window size= 2 footprint=2

® compared to reuse distance

® the number of distinct data elements accessed between this
and the previous access to the same data

Background

® What is footprint?

® Given an execution window in a trace, the footprint is the
number of distinct elements accessed in the window

@
example 0(M mjn nn

window size= 3 footprint=2

® compared to reuse distance

® the number of distinct data elements accessed between this
and the previous access to the same data

Background

® What is footprint?

® Given an execution window in a trace, the footprint is the
number of distinct elements accessed in the window

®
example kmmnnn)

window size=4 footprint=2

® compared to reuse distance

® the number of distinct data elements accessed between this
and the previous access to the same data

Locality on shared cache

© W o® 201 2 rd=5

abcaachbh program | ébcdefg
(a) reuse distances

ft =4
¥

100 ¥
program? Kkmmmnon

75
50 rd’ =rd+ft =9

25 \a program 1&2 ikbcmdmemfnona
0

% miss rate

0 1 2 3

cache size (c) the effect of cache sharing on one reuse distance.

s The reuse distance of “a” is 5 in program 1. When
(b) capacity miss-rate curve runnin? concurrently with program 2, it is increased
computed from reuse distances by the tootprint of program 2 to 9.

M(A) = P(A's reuse distance >= cache size)
M(A|B) = P(A's reuse distance + B's footprint >= cache size)

5

All-window footprint

Given an execution of N run-time data accesses,
calculate footprint of all possible windows

There are N*(N+1)/2 different non-empty windows

Intuitive way
® traverse the data access trace

® for each data access, compute the footprint of all
windows ending at current access

o O(NA2)

end = 6 (window ending point)

acadaa

(window starting point) start = [...6
footprint
® Observation

® footprint only changes, when moving left from the endpoint, at
the last access of a given element before or up to the window
endpoint (in blue)

® NM algorithm: counting footprints instead of counting windows

® only store the last access of each data (M is the number of
distinct data)(Bennett&Kruskal, 1975)

fix a footprint, measure the number of windows of that footprint
In one step.

O(NM)

Further improve by approximation

® NlogM algorithm (Ding and Chilimbi, 2008)
® Do not care about the exact value of big footprint

e |000,000 vs 1000, 001

For a relative precision, e.g. 99%, two footprints differ
only if their difference is greater than |% of the
smaller one.

store only O(logM) data to represent M distinct data

O(NlogM)

Further approximation?

® (CKlogM algorithm by trace compression (my solution)
® seta threshold C, e.g. 3. Do not measure footprints smaller than C

acceptable since small footprints have little effect on cache sharing

divide a trace into a series of intervals called footprint intervals.

footprint only changes, when moving right from the startpoint, at
the first access of a given element after the window startpoint (in

blue)
footprint 2 3 3 4 4 4 end=/..12 (window ending point)

aabacblacadaa

(window starting point) start = 6 T ¥ footprint interval of size 3

CKlogM Algorithm

at most C first accesses of different data within a footprint
interval of size C.

K is the number of footprint intervals in the trace.

Reduce the asymptotic complexity from O(NlogM) to
O(CKlogM)

Define N/CK as the speedup factor

Speedup for all tests

prog.

N

NlogM
time
[sec]

CKlogM
C=128
time
(speedup)

CKlogM
C=256
time
(speedup)

gz1p

804M

12K

328(35)

246(47)

Vpr

208M

4K

84(49)

41(90)

gee

2556M

4K

37(102)

10(198)

mesa

173M

2.6K

10(259)

0(288)

art

1.0B

12K

110(104)

108(114)

mef

40M

414

52(7.8)

141(10)

equake

342M

5K

12(126)

33(161)

crafty

935M

15K

739(20)

187(78)

ammp

818M

13K

1129(12)

1036(13)

parser

929M

14K

142(101)

08(147)

gap

27TTM

5K

30(168)

20(252)

vortex

2087M

537(N/A)

283(N/A)

bzip2

3029M

660(N/A)

565(N/A)

twolf

76M

3(210)

2(316)

median

320M

17(101)

11(131)

mean

497TM

201(100)

153(142)

SPEC2K benchmark statistics

N M K | N/K | CKlogM
Refs/sec
prog. (10%) | (10%) | (108) | (10%) (109)
gzIp 24 7.2 3.4 1.9
Vpr 41 6.9 5.9 2.9
gce 16 2.3 7.3 3.5
mesa 31 18 | 175 |k 84 C=178
art 30 12 | 24 1.7 B

mef 14 27 | 050 S 0.3 relative precision

equake 108 76 | 142 | 65 =90%

crafty : 25 1.7 1.3
2.6 1.8 1.1

parser 21 3.7 1.9

gap ‘ 3.6 7.3
vortex 3.0 4.9
bzip2 7.8 : 2.4
twolf 48 . 1.8

median 7.4) 2.1
mean . 3.3

SPEC2K/Gzip(ref input)

Distribution of all-window footprint

=
S
=
QY
X
Y
Yo)

footprint size

8K 32K

2K 8K 128K 2M 8M 128M

time window size
|) the y-axle show the value of footprint times cache size (64) since we view each
cache line as basic data unit
2) the graph shows statistics of footprints from 10420 different windows
3) both axles are in log scale 13

Cache interference prediction

® Shared-cache is a dynamic system

® Circular effect:

when two programs A and B are run together, memory
access by A affects the performance of B

The change in B affects its memory access

The change of B's memory access in turn affects the
performance of A

® Execution dilation

® defined as: Execution time of A when sharing cache with B

Execution time of A when running alone

| 4

Construct dilation model step by step

® time model

® dilation definition (i=1, 2)

® cache model in shared-memory system

® combine all to get the iterative model

Construct dilation model step by step

Tn |average cost of each instruction

® time model
T =T"n+TPmPLT5ms

n |# instructions

Tp |average cost of private-cache misses

mp |#private cache misses

® dilation definition (i=1, 2)

Ts |average cost of shared-cache misses

ms |#shared-cache misses

® cache model in shared-memory system

® combine all to get the iterative model

01
09

Construct dilation model step by step

Tn |average cost of each instruction

® time model
T =T"n+TPmPLT5ms

n |# instructions

Tp |average cost of private-cache misses

mp |#private cache misses

® dilation definition (i=1, 2)

P Ts |average cost of shared-cache misses
I ng T Tpm.z. T A I g N ms |#shared-cache misses

1mn; +17P ’m’f +1%m;

Xi: relative increase in the number

of capacity misses in shared cache
® cache model in shared-memory system

® combine all to get the iterative model

Construct dilation model step by step

time model
I'=T"n+TPmP+T°m°
dilation definition (i=1, 2)
I"n; +17P 7‘72..? + 1 mjx;
Imn; +1P 7725 +1*m;

— 04
cache model in shared-memory system

P [(11 + fo (t(dl)cmlél) >

Cpi202

Tn

average cost of each instruction

n

instructions

Tp

average cost of private-cache misses

mp

#private cache misses

Ts

average cost of shared-cache misses

ms

H#shared-cache misses

xi: relative increase in the number
of capacity misses in shared cache

;

Pldy > C]

combine all to get the iterative model

01
0o

dl:reuse distance of program |
f2: footprint of program 2

C: cache size

t(dl): a function returning the
corresponding window size of
reuse distance d|

Evaluation

test set of |15 SPEC2K programs on a dual-core machine (Intel Xeon
CPU @ 2.66GHz, 4MB shared cache)

PAW profile each of the |5 programs in a sequential run to collect
reuse distance and footprint information for each program

Predict dilations of each possible pair(105 in total) and rank it from
least performance interference to heaviest

Alternative ranking methods
random ranking: run the standard |5-choose-2 method
miss-rate based ranking: based on total miss ratio in sequential run

measured ranking: based on results from exhaustive testing of all
co-run choices and gives the best possible result.

|6

comparing different interference ranking

paw
miss—rate
random

measured

-
=
O
e,
=
O
n
o)
o)
©
S
)
>
©

80 100

ranked program pairs (from least interference to most interference)

Y-axis shows the average slowdown for the first x pairs

|7

Summary

® a novel all-window footprint analysis algorithm

® combines single-window relative-precision approximation and all-window
constant-precision approximation to have an asymptotic cost of O(CKlogM).

CKlogM algorithm is 100 times faster than NlogM algorithm on average over 14
SPEC2K benchmarks.

® an iterative algorithm to compute the non-linear, asymmetrical effect
of cache sharing.

® 3 tool for ranking program co-run choices without parallel testing

® ranking result is close to that from exhaustive parallel testing

® [hanks

o Q&A

