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Introduction

• Applications are increasingly run in shared cache

• Asymmetrical effect on performance due to cache 
sharing

• equake(<20%) vs vpr(82%)

• Traditional metrics cannot easily explain the 
asymmetry

• Footprint may help
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Background

• What is footprint?

• Given an execution window in a trace, the footprint is the 
number of distinct elements accessed in the window

• example

• compared to reuse distance

• the number of distinct data elements accessed between this 
and the previous access to the same data

k m m n n n
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Background

• What is footprint?

• Given an execution window in a trace, the footprint is the 
number of distinct elements accessed in the window

• example

• compared to reuse distance

• the number of distinct data elements accessed between this 
and the previous access to the same data
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Background

• What is footprint?

• Given an execution window in a trace, the footprint is the 
number of distinct elements accessed in the window

• example

• compared to reuse distance

• the number of distinct data elements accessed between this 
and the previous access to the same data

k m m n n n

window size= 4      footprint=2
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Locality on shared cache

M(A) = P(A’s reuse distance >= cache size)
M(A|B) = P(A’s reuse distance + B’s footprint >= cache size)
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All-window footprint

• Given an execution of N run-time data accesses, 
calculate footprint of all possible windows

• There are N*(N+1)/2 different non-empty windows

• intuitive way

• traverse the data access trace

• for each data access, compute the footprint of all 
windows ending at current access

• O(N^2)
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a a b a c b a c a d a a
end = 6 (window ending point)

(window starting point) start = 1...6

footprint 3 3 3 3 2 1

• Observation

• footprint only changes, when moving left from the endpoint, at 
the last access of a given element before or up to the window 
endpoint (in blue)

• NM algorithm: counting footprints instead of counting windows 

• only store the last access of each data (M is the number of 
distinct data)(Bennett&Kruskal, 1975)

• fix a footprint, measure the number of windows of that footprint 
in one step. 

• O(NM)



Further improve by approximation

• NlogM algorithm (Ding and Chilimbi, 2008)

• Do not care about the exact value of big footprint

• 1000,000 vs 1000, 001

• For a relative precision, e.g. 99%, two footprints differ 
only if their difference is greater than 1% of the 
smaller one. 

• store only O(logM) data to represent M distinct data

• O(NlogM)
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Further approximation?

• CKlogM algorithm by trace compression (my solution)

• set a threshold C, e.g. 3. Do not measure footprints smaller than C

• acceptable since small footprints have little effect on cache sharing

• divide a trace into a series of intervals called footprint intervals.

• footprint only changes, when moving right from the startpoint, at 
the first access of a given element after the window startpoint (in 
blue) 

a a b a c b a c a d a a

end = 7...12 (window ending point)

(window starting point) start = 6

footprint 2 3 3 4 4

a footprint interval of size 3

4
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CKlogM Algorithm

• at most C first accesses of different data within a footprint 
interval of size C.

• K is the number of footprint intervals in the trace.

• Reduce the asymptotic complexity from O(NlogM) to 
O(CKlogM)

• Define N/CK as the speedup factor
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Speedup for all tests
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SPEC2K benchmark statistics
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SPEC2K/Gzip(ref input)
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1) the y-axle show the value of footprint times cache size (64) since we view each 
cache line as basic data unit
2) the graph shows statistics of footprints from 10^20 different windows
3) both axles are in log scale 13



Cache interference prediction

• Shared-cache is a dynamic system

• Circular effect: 

• when two programs A and B are run together, memory 
access by A affects the performance of B

• The change in B affects its memory access

• The change of B’s memory access in turn affects the 
performance of A

• Execution dilation

• defined as: Execution time of A when sharing cache with B

Execution time of A when running alone
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Construct dilation model step by step

• time model

• dilation definition (i=1, 2)

• cache model in shared-memory system

• combine all to get the iterative model
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Tn average cost of each instruction

n # instructions

Tp average cost of private-cache misses

mp #private cache misses

Ts average cost of shared-cache misses

ms #shared-cache misses
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Construct dilation model step by step

• time model

• dilation definition (i=1, 2)

• cache model in shared-memory system

• combine all to get the iterative model

Tn average cost of each instruction

n # instructions

Tp average cost of private-cache misses

mp #private cache misses

Ts average cost of shared-cache misses

ms #shared-cache misses

xi: relative increase in the number 
of capacity misses in shared cache

d1: reuse distance of program 1
f2:  footprint of program 2
C:  cache size
t(d1): a function returning the 
corresponding window size of 
reuse distance d1
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Evaluation
• test set of 15 SPEC2K programs on a dual-core machine (Intel Xeon 

CPU @ 2.66GHz, 4MB shared cache)

• PAW profile each of  the 15 programs in a sequential run to collect 
reuse distance and footprint information for each program

• Predict dilations of each possible pair(105 in total) and rank it from 
least performance interference to heaviest

• Alternative ranking methods

• random ranking: run the standard 15-choose-2 method

• miss-rate based ranking: based on total miss ratio in sequential run

• measured ranking: based on results from exhaustive testing of all 
co-run choices and gives the best possible result.
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Y-axis shows the average slowdown for the first x pairs
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Summary

• a novel all-window footprint analysis algorithm

• combines single-window relative-precision approximation and all-window 
constant-precision approximation to have an asymptotic cost of O(CKlogM). 

• CKlogM algorithm is 100 times faster than NlogM algorithm on average over 14 
SPEC2K benchmarks.

• an iterative algorithm to compute the non-linear, asymmetrical effect 
of cache sharing. 

• a tool for ranking program co-run choices without parallel testing

• ranking result is close to that from exhaustive parallel testing
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• Thanks

• Q&A
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