
Statically Verifying API Usage Rule using
Tracematches

Xavier Noumbissi, Patrick Lam

University of Waterloo

November 4, 2010

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 1 / 26

Outline

1 Problem

2 Constraint language

3 Example

4 Analysis Overview

5 Related Work

6 Future Work

7 Conclusion

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 2 / 26

Problem

Software relies on Libraries

APPLICATION

LIBRARY 1

LIBRARY 2

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 3 / 26

Problem Abstraction Layer

Plug-in / Wrapper-Library

APPLICATION

PLUGIN 1

PLUGIN 2

LIBRARY 1

LIBRARY 2

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 4 / 26

Problem Expressing Properties

Verification Properties

Two types of properties:

State Properties: Pre- and Post-Conditions

Temporal Properties: Typestates, LTL, etc.

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 5 / 26

Constraint language Tracematches

Tracematches: Unauthorized events sequence

Example: Do not write to a file after closing it.

Regular Expression: open write* close+ write

q0start q1 q2 q3
open

write close

close write

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 6 / 26

Example Configuration

Example

BookEditor BookHandler Java API
(FileWriter)

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 7 / 26

Example The Code

Application & Plug-in

p u b l i c c lass BookHandler {
F i l e W r i t e r l 1 ;
p u b l i c vo id openBook (S t r i n g b){

l 1 = new F i l e W r i t e r (b) ;
}

p u b l i c vo id p r in tChap te r (S t r i n g s){
l 1 . w r i t e (s) ;

}

p u b l i c vo id p r i n t S e c t i o n (S t r i n g s){
i f (n u l l == s) l 1 . f l u s h () ;
e lse l 1 . w r i t e (s) ;

}

p u b l i c vo id addIndex (S t r i n g [] t){
f o r (i n t k =0; k<t . l eng th ; ++k) {

l 1 . w r i t e (t [k]) ;
}
F i l e W r i t e r l 3 = l 1 ; / / I l l u s t r a t e s
l 3 . c lose () ; / / a l i a s i n g

}

p u b l i c vo id c lose (){
l 1 . f l u s h () ;
l 1 . c lose () ;

}
}

p u b l i c c lass BookEditor {
p u b l i c s t a t i c vo id main (S t r i n g [] args){

BookHandler b = new BookHandler () ;
S t r i n g [] index = {"book" , "chapter"} ;
S t r i n g B u i l d e r s t r = new S t r i n g B u i l d e r () ;

b . openBook ("book.txt") ;
b . p r i n tChap te r ("A chapter") ;

s t r . append ("Not in abstract CFG") ;

b . p r i n t S e c t i o n ("A section") ;

b . addIndex (index) ;

b . c lose () ;
}

}

ACFG

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 8 / 26

Example Usage Rule

A Usage Rule for java.io.FileWriter

No write or flush on a FileWriter after a close.

q0start q1 q2

write, flush

close

close

write, flush

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 9 / 26

Example A Rule Violation

A Violation of the Rule

The developer expects:

close: closes the book’s stream

addIndex: does not close the book’s stream

But:

addIndex: closes the stream

close: flushes the stream before closing it

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 10 / 26

Example Plug-in summary

Method summaries

Summary of BookHandler.addIndex

if (k < t.length)

k = 0

l1.write(t[k]);

++k;

FileWriter l3=l1;

l3.close();

T

F

q0 q2

q1

l1.close()

l1.write()

Must-alias information at intraprocedural level: l1 and l3 must alias

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 11 / 26

Example Plug-in summary

Plug-in summary

Reusable as long as Plug-in code unchanged

Represents all events sequences on
FileWriter objects

Storage of summaries improves scalability

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 12 / 26

Example Application code

Abstracted CFG for BookEditor.main
The code

Here’s a CFG which
only includes the
BookHandler calls.

Statements on edges

q0

q1

q2

q3

q4

q6

b.openBook(...)

b.printChapter(...)

b.printSection(...)

b.addIndex(...)

b.closeBook(...)

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 13 / 26

Example Application code

Edge Substitution - 1

Substitute method-call edges with NFA summaries:

Summarizes application behavior with respect to
tracematch events

May-alias information at interprocedural level

Unless FileWriter objects may not alias

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 14 / 26

Example Application code

Edge Substitution - 2

c0 c1

c2

c3

c4

c5 c6 c7

c8

l1.write()

l1.write()

l1.flush() l1.write()

l1.close()

l1.flush() l1.close()

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 15 / 26

Example Application code

Tracematch: Runtime Monitor (RM)

Combined execution of application and RM:

Synchronous Product Automaton (SPA): defines a
transition for an event only if it occurs in both
automatons

Shared actions: tracematch events

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 16 / 26

Example Application code

Synchronous Product Automaton - 1

c0 q0 c1 q0

c3 q0

c2 q0

c4 q0

c5 q1 c6 q2

c8 q0

l1.write()

l1.flush()

l1.write()

l1.close()

l1.write()

l1.flush()

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 17 / 26

Example Application code

Synchronous Product Automaton - 2

c0 q0 c1 q0

c3 q0

c2 q0

c4 q0

c5 q1 c6 q2

c8 q0

l1.write()

l1.flush()

l1.write()

l1.close()

l1.write()

l1.flush()

An accepting path represents a violation of the rules.

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 18 / 26

Analysis Overview Overview

Our approach: Four Phases

1 Compute plug-in summaries (Preliminary phase)

2 Generate application Abstract CFGs

3 Integrate plug-in summaries to abstract CFGs

4 Build SPA and check for accepting paths

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 19 / 26

Analysis Overview Overview

Implementation

Uses the Soot Framework

Interaction of inter- and intra-procedural analysis

Intraprocedural analysis as a region-based
analysis

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 20 / 26

Analysis Overview Overview

Computing Plug-in Summaries

Advantages of storing summaries:

Effects of whole program analysis with partial
code

No need to have plug-in code

Manual creation of plug-in summary

Plug-in summary as a contract

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 21 / 26

Analysis Overview Overview

Library Object Accesses

Library objects may be accessible as:

Member variables

Local instantiated variables

Others: out of scope

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 22 / 26

Related Work

Related Work

Static optimization of runtime monitors: static verification
of tracematches at the intraprocedural level (Bodden et al.)

Analysis of multiple interactive objects: Uses
tracematches to verify correct interaction of several objects
(Naeem et al.)

Component Level data-flow Analysis (CLA): computes
summaries and properties of software with partial
information (source code or summaries) of its components.
(Rountev et al.)

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 23 / 26

Future Work

Future Work

Complete implementation

Test analysis on production software

Use of constraint-solvers to remove false positives
from summaries

Try to improve scalability of other analyses on
tracematches using summaries

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 24 / 26

Conclusion

Contributions

Check that abstraction layers do not introduce
bugs

Use of summaries as contracts

Use of summaries for other analyses on
tracematches

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 25 / 26

Conclusion

THANK YOU !

Comments & Questions

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 26 / 26

	Problem
	Abstraction Layer
	Expressing Properties

	Constraint language
	Tracematches

	Example
	Configuration
	The Code
	Usage Rule
	A Rule Violation
	Plug-in summary
	Application code

	Analysis Overview
	Overview

	Related Work
	Future Work
	Conclusion

