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Problem

Software relies on Libraries

APPLICATION

LIBRARY 1

LIBRARY 2

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 3 / 26



Problem Abstraction Layer

Plug-in / Wrapper-Library

APPLICATION

PLUGIN 1

PLUGIN 2

LIBRARY 1

LIBRARY 2
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Problem Expressing Properties

Verification Properties

Two types of properties:

State Properties: Pre- and Post-Conditions

Temporal Properties: Typestates, LTL, etc.
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Constraint language Tracematches

Tracematches: Unauthorized events sequence

Example: Do not write to a file after closing it.

Regular Expression: open write* close+ write

q0start q1 q2 q3
open

write close

close write
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Example Configuration

Example

BookEditor BookHandler Java API
(FileWriter)
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Example The Code

Application & Plug-in

p u b l i c c lass BookHandler {
F i l e W r i t e r l 1 ;
p u b l i c vo id openBook ( S t r i n g b){

l 1 = new F i l e W r i t e r ( b ) ;
}

p u b l i c vo id p r in tChap te r ( S t r i n g s ){
l 1 . w r i t e ( s ) ;

}

p u b l i c vo id p r i n t S e c t i o n ( S t r i n g s ){
i f ( n u l l == s ) l 1 . f l u s h ( ) ;
e lse l 1 . w r i t e ( s ) ;

}

p u b l i c vo id addIndex ( S t r i n g [ ] t ){
f o r ( i n t k =0; k<t . l eng th ; ++k ) {

l 1 . w r i t e ( t [ k ] ) ;
}
F i l e W r i t e r l 3 = l 1 ; / / I l l u s t r a t e s
l 3 . c lose ( ) ; / / a l i a s i n g

}

p u b l i c vo id c lose ( ){
l 1 . f l u s h ( ) ;
l 1 . c lose ( ) ;

}
}

p u b l i c c lass BookEditor {
p u b l i c s t a t i c vo id main ( S t r i n g [ ] args ){

BookHandler b = new BookHandler ( ) ;
S t r i n g [ ] index = {"book" , "chapter"} ;
S t r i n g B u i l d e r s t r = new S t r i n g B u i l d e r ( ) ;

b . openBook ("book.txt" ) ;
b . p r i n tChap te r ("A chapter" ) ;

s t r . append ("Not in abstract CFG" ) ;

b . p r i n t S e c t i o n ("A section" ) ;

b . addIndex ( index ) ;

b . c lose ( ) ;
}

}

ACFG
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Example Usage Rule

A Usage Rule for java.io.FileWriter

No write or flush on a FileWriter after a close.

q0start q1 q2

write, flush

close

close

write, flush
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Example A Rule Violation

A Violation of the Rule

The developer expects:

close: closes the book’s stream

addIndex: does not close the book’s stream

But:

addIndex: closes the stream

close: flushes the stream before closing it
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Example Plug-in summary

Method summaries

Summary of BookHandler.addIndex

if (k < t.length)

k = 0

l1.write(t[k]);

++k;

FileWriter l3=l1;

l3.close();

T

F

q0 q2

q1

l1.close()

l1.write()

Must-alias information at intraprocedural level: l1 and l3 must alias
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Example Plug-in summary

Plug-in summary

Reusable as long as Plug-in code unchanged

Represents all events sequences on
FileWriter objects

Storage of summaries improves scalability
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Example Application code

Abstracted CFG for BookEditor.main
The code

Here’s a CFG which
only includes the
BookHandler calls.

Statements on edges

q0

q1

q2

q3

q4

q6

b.openBook(...)

b.printChapter(...)

b.printSection(...)

b.addIndex(...)

b.closeBook(...)
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Example Application code

Edge Substitution - 1

Substitute method-call edges with NFA summaries:

Summarizes application behavior with respect to
tracematch events

May-alias information at interprocedural level

Unless FileWriter objects may not alias
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Example Application code

Edge Substitution - 2

c0 c1

c2

c3

c4

c5 c6 c7

c8

l1.write()

l1.write()

l1.flush() l1.write()

l1.close()

l1.flush() l1.close()

(University of Waterloo) Statically Verifying API Usage Rule November 4, 2010 15 / 26



Example Application code

Tracematch: Runtime Monitor (RM)

Combined execution of application and RM:

Synchronous Product Automaton (SPA): defines a
transition for an event only if it occurs in both
automatons

Shared actions: tracematch events
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Example Application code

Synchronous Product Automaton - 1

c0 q0 c1 q0

c3 q0

c2 q0

c4 q0

c5 q1 c6 q2

c8 q0

l1.write()

l1.flush()

l1.write()

l1.close()

l1.write()

l1.flush()
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Example Application code

Synchronous Product Automaton - 2

c0 q0 c1 q0

c3 q0

c2 q0

c4 q0

c5 q1 c6 q2

c8 q0

l1.write()

l1.flush()

l1.write()

l1.close()

l1.write()

l1.flush()

An accepting path represents a violation of the rules.
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Analysis Overview Overview

Our approach: Four Phases

1 Compute plug-in summaries (Preliminary phase)

2 Generate application Abstract CFGs

3 Integrate plug-in summaries to abstract CFGs

4 Build SPA and check for accepting paths
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Analysis Overview Overview

Implementation

Uses the Soot Framework

Interaction of inter- and intra-procedural analysis

Intraprocedural analysis as a region-based
analysis
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Analysis Overview Overview

Computing Plug-in Summaries

Advantages of storing summaries:

Effects of whole program analysis with partial
code

No need to have plug-in code

Manual creation of plug-in summary

Plug-in summary as a contract
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Analysis Overview Overview

Library Object Accesses

Library objects may be accessible as:

Member variables

Local instantiated variables

Others: out of scope
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Related Work

Related Work

Static optimization of runtime monitors: static verification
of tracematches at the intraprocedural level (Bodden et al.)

Analysis of multiple interactive objects: Uses
tracematches to verify correct interaction of several objects
(Naeem et al.)

Component Level data-flow Analysis (CLA): computes
summaries and properties of software with partial
information (source code or summaries) of its components.
(Rountev et al.)
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Future Work

Future Work

Complete implementation

Test analysis on production software

Use of constraint-solvers to remove false positives
from summaries

Try to improve scalability of other analyses on
tracematches using summaries
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Conclusion

Contributions

Check that abstraction layers do not introduce
bugs

Use of summaries as contracts

Use of summaries for other analyses on
tracematches
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Conclusion

THANK YOU !

Comments & Questions
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