
Kai Tian, , Yunlian JiangYunlian Jiang, Eddy Zhang,, Eddy Zhang,

Xipeng Shen (presenter)Xipeng Shen (presenter)

College of William and MaryCollege of William and Mary

An Input-Centric Paradigm for
Program Dynamic Optimizations

(Published in OOPSLA’10)

College of William & Mary 2

Dynamic

Profile

Static1950s

1980s

1990s

Program Optimizations

College of William & Mary 3

Dynamic Optimizations

Behavior

Observe Optimize

Widely used in Java, C#, etc.

Runtime system

College of William & Mary 4

foo()

foo()

foo()

foo()

foo()

foo()

foo()

Current Limitations

delay

Runtime
overhead

Inferior performance
caused by
local view-based
optimizations

while (...){
 foo ();
}

foo()

opt.

foo()

foo()

foo()

foo()

foo()

foo()
Reactive scheme

47% on J9 [Arnold+’ 05]

21% on JikesRVM [Mao+’ 09]

College of William & Mary 5

A
da

p t
i v
ity

Proactivity

dynamic
optimization

offline prof.

static
compilation

Adaptivity-Proactivity Dilemma

input-centric
paradigm

College of William & Mary 6

Outline

 Why input-centric?

 Input-centric paradigm

 Evaluation

 Related work

 Conclusion

College of William & Mary 7

Accurate prediction of how programs would behave.

Program Behaviors

Prerequisite for Optimizations

(method calling freq, locality, loop
trip counts...)

College of William & Mary 8

Prog Beh = Code + Inputs + Running Environments

What Decide Program Behavior?

only deciding factor given a program on a machine

 Command-line arguments

 Interactively input data

 Input files

 ...

College of William & Mary 9

Input-Centric Opt Paradigm

Predicted
behavior

OptimizeInput

Idea: Use program inputs to trigger runtime behavior
 prediction and proactive optimizations
Proactivity: Early optimize based on prediction
Adaptivity: Input-specific optimization

College of William & Mary 10

input

Benefits for JIT

 JIT in JikesRVM

0-1 1 2
deeper optimization
larger overhead

foo()
foo()

foo()
opt(-1)

opt(0)

opt(1)

input

foo()
foo()

foo()
foo()

foo()

opt(1)1

* Thanks to coghillcartoning.com for the image.

College of William & Mary 11

input

behaviors

 Complexities in inputs

 Complexities in relations

 Integration in runtime

Challenges

* Thanks to coghillcartoning.com for the image.

College of William & Mary 12

Techniques to Realize Input-Centric Paradigm

College of William & Mary 13

Input Characterization

 Goal

 Solution
 Seminal Behaviors [Jiang+: CGO’10]

 Exploit strong correlations among program behaviors

input feature vector
< feature 1, feature 2, ..., feature k >raw input

College of William & Mary 14

main(int argc, char * argv){
 ...
 mesh_init (dataFile,mesh,refMesh);
 genMesh (mesh,0,mesh->vN);
 verify (mesh, refMesh);
}

Mesh * mesh_init
(char * initInfoF, Mesh* mesh, Mesh* refMesh)
{
 // open vertices file, read # of vertices
 FILE * fdata = fopen (initInfoF, "r");
 fscanf (fdata, "%d, %\n", &vN);
 mesh->vN = vN;
 v = (vertex*) malloc (vN*sizeof(vertex));
 // read vertices positions
 for (i=0; i<vN; i++) {
 fscanf (fdata, "%f %f\n", &v[i].x, &v[i].y);
 ...}
 // sort vertices by x and y values
 for (i=1; i< vN; i++){
 for (j=vN-1; j>=i; j--){
 ...}
 }
 while (!feof(fd)){
 ...
 // read edges into refMesh for
 // later verification
 }
}

// recursive mesh generation
void genMesh (Mesh *m, int left, int right){
 if (right>3+left){
 genMesh (m, left, (left+right)/2);
 genMesh (m, (left+right)/2+1, right);
 ...}
 ...
}

void verify (Mesh *m, Mesh *mRef){
 ...
 for (i=0, j=0; i< m->edgesN; i++){
 ...
 }
}

Seminal Behaviors

College of William & Mary 15

Seminal Behaviors Identification

 Through statistical learning

 Fully automatic framework

 Details in [Jiang+:CGO’10].

College of William & Mary 16

Techniques to Realize Input-Centric Paradigm

College of William & Mary 17

Input Behavior Modeling

 Problem formulation
 To construct predictive models

 Target Behaviors = f (Seminal Behaviors)

 Solution: Cross-run machine learning
 Target beh. is categorical (e.g., opt. levels)

 Classification Trees

 Target beh. is numerical (e.g., calling freq.)
 Linear Regression (LMS)

 Regression Trees

College of William & Mary 18

Special Challenges

 Categorical vs. numerical features
 Data types

 Number of unique values in training data sets

 Feature selection
 Classification & regression trees

 Filter out unimportant features automatically

 LMS regression
 PCA (when all features numerical)

• Select directions showing large variations

 Stepwise selection (otherwise)
• Continuously add features that improve prediction

College of William & Mary 19

Risk Control

 Prevent effects of wrong predictions
 Fine-grained discriminative prediction

Keep assessing confidence level of each input subspace;
if (confidence_level > Threshold)

Do prediction;
else

Fall back to default reactive strategy;

Details in [Tian+:OOPSLA’10].

College of William & Mary 20

Techniques to Realize Input-Centric Paradigm

College of William & Mary 21

Evaluation 1: JikesRVM opt

 Machine
 Intel Xeon E5310, Linux 2.6.22

 Java Runtime
 Modified JikesRVM 3.1.0

 Benchmarks
 10 Java programs from Dacapo, Grande, JVM98

 Inputs
 Extra inputs from [Mao+:CGO’09]

College of William & Mary 22

Prediction Accuracy for Java
Prediction accuracy

0.970.920.966.151.3Average

0.980.90.98112RayTracer

0.990.970.9929Search

0.990.980.99114MonteCarlo

0.980.830.98215MolDyn

0.980.990.99114Euler

0.990.760.967100Bloat

0.960.950.9539175Antlr

0.840.890.972100Mtrt

0.960.980.84454Db

0.990.930.99220Compress

min heapcall freqopt level
of
sem.beh.

of
inputs

Program

10-fold cross-validation

College of William & Mary 23

Speedup in JikesRVM
Baseline: default JikesRVM

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Mt
rt

Co
m
pr
es
s D

b
An
tlr

Bl
oa
t

Eu
le
r

M
ol
Dy
n

M
on
te
Ca
rlo

Se
ar
ch

Ra
yT
ra
ce
r

Av
er
ag
e

Min Mean Max

College of William & Mary 24

Evaluation 2 : Dynamic Version Selection

 Input-centric adaptation
 Models from inputs to suitable versions

 Predict the best version to run in a new execution

 Reactive approach [Chuang+:07]
 Timing each version and use the best for the remaining execution

College of William & Mary 25

Experiment Setting
 Versions creation

 IBM XL C compiler
 5 code versions from feedback-driven opt

 Machines
 IBM Power5, AIX 5.3

 Benchmarks
 14 C programs from SPEC2000 & SPEC2006

 Inputs
 10--120
 Some from University of Alberta (J. N. Amaral’s group)
 Others collected or created by us

College of William & Mary 26

Speedup by Version Selection

Input-
centricRuntime

Reactive

Baseline: static compilation at highest opt level

College of William & Mary 27

Discussions

 Three steps for input-centric optimizations
 Profile collection (offline)
 Seminal beh recog. & input-beh model construction (offline)
 Proactive behavior prediction & optimizations (online)

 Input-centric paradigm is fundamental
 May benefit many other optimizations

 Anywhere runtime adaptation is needed

 Not conflict with phase changes
 Complement to reactive dynamic optimizations

College of William & Mary 28

Related Work
• Phase-based adaptive recompilation

• [Gu & Verbrugge: CGO’08]

• Benchmark design
• [Berube & Amaral: SPEC’07]

• Library development
• ATLAS [Whaley+:01], Sorting [Li+:CGO04], FFTW [Frigo+: IEEE’05],

SPIRAL [M. Puschel+: IEEE’05], STAPL [Thomas+: PPOPP’05]

• General-purpose programming
• Seminal behavior exploration [Jiang+: CGO’10]
• Specification language (XICL) to capture input features [Mao+:CGO’09]

College of William & Mary 29

Conclusions

College of William & Mary 30

Thanks!

College of William & Mary 31

Potential Speedup in Version Selection
Baseline: static compilation at highest opt level

College of William & Mary 32

