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Dynamic Optimizations

Behavior

Observe Optimize

Widely used in Java, C#, etc. 

Runtime system
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47% on J9 [Arnold+’ 05]

21% on JikesRVM [Mao+’ 09]
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Outline

 Why input-centric?

 Input-centric paradigm

 Evaluation

 Related work

 Conclusion
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Accurate prediction of how programs would behave.

Program Behaviors

Prerequisite for Optimizations

(method calling freq,  locality, loop
trip counts...)
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Prog Beh = Code + Inputs + Running Environments

What Decide Program Behavior?

only deciding factor given a program on a machine

 Command-line arguments

 Interactively input data

 Input files

 ...
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Input-Centric Opt Paradigm

Predicted
behavior

OptimizeInput

Idea:  Use program inputs to trigger runtime behavior
             prediction and proactive optimizations
Proactivity:   Early optimize based on prediction
Adaptivity:    Input-specific optimization
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input

Benefits for JIT

 JIT in JikesRVM

0-1 1 2
deeper optimization
larger overhead
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* Thanks to coghillcartoning.com for the image.
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input

behaviors

 Complexities in inputs

 Complexities in relations

 Integration in runtime

Challenges

* Thanks to coghillcartoning.com for the image.
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Techniques to Realize Input-Centric Paradigm
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Input Characterization

 Goal

 Solution
 Seminal Behaviors [Jiang+: CGO’10]

 Exploit strong correlations among program behaviors

input feature vector
< feature 1, feature 2, ..., feature k >raw input
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main(int argc, char * argv){
  ...
  mesh_init (dataFile,mesh,refMesh);
  genMesh (mesh,0,mesh->vN);
  verify (mesh, refMesh);
}

Mesh * mesh_init
(char * initInfoF, Mesh* mesh, Mesh* refMesh)
{
    // open vertices file, read # of vertices
    FILE * fdata = fopen (initInfoF, "r");
    fscanf (fdata, "%d, %\n", &vN);
    mesh->vN = vN;
    v = (vertex*) malloc (vN*sizeof(vertex));
    // read vertices positions
    for (i=0; i<vN; i++) {
        fscanf (fdata, "%f %f\n", &v[i].x, &v[i].y);
      ...}
    // sort vertices by x and y values
    for (i=1; i< vN; i++){
         for (j=vN-1; j>=i; j--){
          ...}
     }
    while (!feof(fd)){
       ... 
      // read edges into refMesh for 
     // later verification
    }
}

// recursive mesh generation
void genMesh (Mesh *m, int left, int right){
  if (right>3+left){
    genMesh (m, left, (left+right)/2);
    genMesh (m, (left+right)/2+1, right);
    ...}
  ...
}

void verify (Mesh *m, Mesh *mRef){
    ...
  for (i=0, j=0; i< m->edgesN; i++){
    ...
  }
}

Seminal Behaviors



College of William & Mary 15

Seminal Behaviors Identification

 Through statistical learning

 Fully automatic framework

 Details in [Jiang+:CGO’10].
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Techniques to Realize Input-Centric Paradigm
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Input Behavior Modeling

 Problem formulation
 To construct predictive models

 Target Behaviors = f (Seminal Behaviors)

 Solution: Cross-run machine learning
 Target beh. is categorical (e.g., opt. levels)

 Classification Trees

 Target beh. is numerical (e.g., calling freq.)
 Linear Regression (LMS)

 Regression Trees
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Special Challenges

 Categorical vs. numerical features
 Data types

 Number of unique values in training data sets

 Feature selection
 Classification & regression trees

 Filter out unimportant features automatically

 LMS regression
 PCA (when all features numerical)

• Select directions showing large variations

 Stepwise selection  (otherwise)
• Continuously add features that improve prediction
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Risk Control

 Prevent effects of wrong predictions
 Fine-grained discriminative prediction

Keep assessing confidence level of each input subspace;
if (confidence_level > Threshold)

Do prediction;
else

Fall back to default reactive strategy;

Details in [Tian+:OOPSLA’10].
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Techniques to Realize Input-Centric Paradigm
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Evaluation 1: JikesRVM opt

 Machine
 Intel Xeon E5310, Linux 2.6.22

 Java Runtime
 Modified JikesRVM 3.1.0

 Benchmarks
 10 Java programs from Dacapo, Grande, JVM98

 Inputs
 Extra inputs from   [Mao+:CGO’09]
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Prediction Accuracy for Java
Prediction accuracy

0.970.920.966.151.3Average

0.980.90.98112RayTracer

0.990.970.9929Search

0.990.980.99114MonteCarlo

0.980.830.98215MolDyn

0.980.990.99114Euler

0.990.760.967100Bloat

0.960.950.9539175Antlr

0.840.890.972100Mtrt

0.960.980.84454Db

0.990.930.99220Compress

min heapcall freqopt level
# of
sem.beh.

# of
inputs

Program

10-fold cross-validation
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Speedup in JikesRVM
Baseline: default JikesRVM
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Evaluation 2 : Dynamic Version Selection

 Input-centric adaptation
 Models from inputs to suitable versions

 Predict the best version to run in a new execution

 Reactive approach [Chuang+:07]
 Timing each version and use the best for the remaining execution
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Experiment Setting
 Versions creation

 IBM XL C compiler
 5 code versions from feedback-driven opt

 Machines
 IBM Power5, AIX 5.3

 Benchmarks
 14 C programs from SPEC2000 & SPEC2006

 Inputs
 10--120
 Some from University of Alberta (J. N. Amaral’s group)
 Others collected or created by us
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Speedup by Version Selection

Input-
centricRuntime

Reactive

Baseline: static compilation at highest opt level
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Discussions

 Three steps for input-centric optimizations
 Profile collection   (offline)
 Seminal beh recog. & input-beh model construction  (offline)
 Proactive behavior prediction & optimizations   (online)

 Input-centric paradigm is fundamental
 May benefit many other optimizations

 Anywhere runtime adaptation is needed

 Not conflict with phase changes
 Complement to reactive dynamic optimizations
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Related Work
• Phase-based adaptive recompilation

• [Gu & Verbrugge: CGO’08]

• Benchmark design
• [Berube & Amaral: SPEC’07]

• Library development
• ATLAS [Whaley+:01], Sorting [Li+:CGO04], FFTW [Frigo+: IEEE’05],

SPIRAL [M. Puschel+: IEEE’05], STAPL [Thomas+: PPOPP’05]

• General-purpose programming
• Seminal behavior exploration  [Jiang+: CGO’10]
• Specification language (XICL) to capture input features  [Mao+:CGO’09]



College of William & Mary 29

Conclusions
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Thanks!
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Potential Speedup in Version Selection
Baseline: static compilation at highest opt level
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