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October 2008, IBM Toronto Software Laboratory, Markham,
ON, Kevin Stoodley, Mark Stoodley, and Marius Pirvu:

Can we use machine learning to improve compilation
decisions in Testarossa?

November 2008: University of Alberta, Edmonton, AB, Canada
Duane Szafron, Michael Bowling, Ricardo Sanchez
We should try Support Vector Machines.

May 2009-August 2009: Ricardo spends the Summer working
® with mainly with Marius Pirvu at the IBM Toronto
ﬂ Software Laboratory

IBM Toronto Software Laboratory



The Research Question

Can Support Vector Machines (SVMs) improve on the selection of
code transformations done by human developers?

Characterize methods using features.

Learn to associate features with compilation strategies.

Strategies can be selected on a per-method basis.
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Support Vector Machines
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A parameter Cin the implementation of the SVM specifies the
maximum separation margin.



SVMs In Testarossa

* 51 features to describe each method
— 51-dimension space search

e More than 70 code transformations
— More than 279 classes

* Why not non-linear kernels
— Data is already highly dimensional
— No need to project it to higher dimensions
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Measuring Time
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Goal

Many-Iteration Loops? Constant Folding?

Allocates Dynamic Memory? Partial Redundancy Elimination?
Virtual Method Overridden? Loop Unrolling?

Uses Floating Point? Tree Simplification?

Number of Non-Scalar Objects Dead Tree Elimination?

Number of Long doubles Scalar Value Expansion?

Number of int Method Specialization?

Machine
-Learned
Model




Ranking Plans

Let (i,p,h) represent a method i compiled with
a compilation plan p at a level of hotness h:

Total running time Compilation time
. of all invocations of (i,p,h) for (i,p,h)
Value(i,p,h) =
Number of invocations Threshold for h
of (i,p,h)

For each method i, select the top t plans for training of the SVM.
The valued of the lowest plan must be at least f % of the best.

In this research t =3, and f = 95%.



Using Learned Model
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Socket-Based Communication
Between Compiler and Model

(@) [T™] Request r-----

Testarossa Model
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File system

Used named pipes (Unix) to communicate
between Compiler and Model



Data Set Sizes

Merged Data Ranked Data (training)

: Unique Vector: Vector:
Data Unique Feature
Feature Instance Instances Classes Instance
Instances Classes ) Vectors )
Vectors Ratio Ratio

1,175 1:1,320 2,326 949 1,094 1:2.12
1,153  1:1,368 2,213 1,590 1,108 1:1.99
1,201  1:2,118 2,073 1,379 1,069 1:1.94

Cold 1,551,545 1,421,717
Warm 1,577,157 1,455,947
Hot 2,543,564 2,229,364



Experimental Platform

e AMD Blade Server

— 16 nodes
* 2 Quad-Core Opteron/Node
* 2 GHz
8 GiB of RAM

* 20 GiB swap space
e CentOS GNU/Linux

 Development version of
Testarossa



StartUp x Throughput
Performance

StartUp Performance:

T

Start JVM Finish one iteration of Benchmark

Throughput Performance:

- j

Start JVM Finish ten iterations of Benchmark



StartUp Performance (SPECjvm98)

SPECjvm98 Performance (Start-up)
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Compilation Time Reduction for
StartUp (SPEC jvm98)

SPECjvm98 Compilation Time (Start—up)
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Throughput Performance (SPECjvm98)

SPECjvm98 Performance (10 iterations)
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StartUp Performance DaCapo

DaCapo 9.12 Performance (Start—-up)
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Throughput DaCapo

DaCapo 9.12 Performance (10 iterations)
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Influence of Inlining

For the previous performance results we collected
method features and applied the model before inlining.

Inlining may change method features significantly.

What would the results be if method features
were measured after inlining?



SPECjvm98 Performance (Start-up)
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Relative Performance (Testarossa Adaptive)

SPECjvm98 (start-up) - javac
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SPECjvm98 Performance (10 iterations)
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After inlining

SPECjvm98 Performance (10 iterations)
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Relative Performance (Testarossa Adaptive)
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SPECjvm98 (10 iterations) — javac
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What have we learned?

Overall: SVM-based models outperform
Testarossa’s heuristics for start-up performance.

— But it underperforms Testarossa for throughput
performance.

Surprising: significant reduction in compilation
time.

Puzzling: Collecting method features after inlining
did not yield greater performance gains.

Pleasantly positive: model generalized from SPEC
benchmaks to DaCapo.



