Using Support Vector Machines to
Learn How to Compile a Method

Ricardo Nabinger Sanchez, J. Nelson Amaral, Duane Szafron
University of Alberta, Edmonton, AB, Canada
Marius Pirvu, Mark Stoodley
IBM Toronto Software Laboratory, Markham, ON, Canada

QOPSLA 2006

ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications
October 22-26, Portland, Oregon, USA

John Cavazos and Michal O’Boyle, “Method-specific dynamic
compilation using logistic regression.” OOPSLA 2006.

March 2008 Xangrlla RS Rlcardo Sanchez

October 2008, IBM Toronto Software Laboratory, Markham,
ON, Kevin Stoodley, Mark Stoodley, and Marius Pirvu:

Can we use machine learning to improve compilation
decisions in Testarossa?

November 2008: University of Alberta, Edmonton, AB, Canada
Duane Szafron, Michael Bowling, Ricardo Sanchez
We should try Support Vector Machines.

May 2009-August 2009: Ricardo spends the Summer working
® with mainly with Marius Pirvu at the IBM Toronto
ﬂ Software Laboratory

IBM Toronto Software Laboratory

The Research Question

Can Support Vector Machines (SVMs) improve on the selection of
code transformations done by human developers?

Characterize methods using features.

Learn to associate features with compilation strategies.

Strategies can be selected on a per-method basis.

.class

Testarossa

Compilation Control

Intermediate
Language
Generator

€ = e e e e e

€ = e e e e

Optimizer —>

Code Generator

Compiled

Methods

s390 \\ PPC -
MIPS ARM

X86

Support Vector Machines

O e Missclassifications

® o Points closest to
e ® separatingplan

® o o .
400 5 Ve st @ are the supporting
(2 e vector.
ef? . 5
N\a(%\(\

A parameter Cin the implementation of the SVM specifies the
maximum separation margin.

SVMs In Testarossa

* 51 features to describe each method
— 51-dimension space search

e More than 70 code transformations
— More than 279 classes

* Why not non-linear kernels
— Data is already highly dimensional
— No need to project it to higher dimensions

Data Collection

Interpreted Methods

Modifier
Queue

Virtual
Machine

Compilation Plan

Compiled Methods

v

00110100011001..001

Modifier

00110000011000..000

\ 4

Just-In-Time
Compiler

Strategy Control

Measuring Time

call foo() return
—
Enter hook Exit hook

In-method execution

=
Processor ticks
L T - (TSC)
[I

n out

Time-Stamp Counter

Goal

Many-Iteration Loops? Constant Folding?

Allocates Dynamic Memory? Partial Redundancy Elimination?
Virtual Method Overridden? Loop Unrolling?

Uses Floating Point? Tree Simplification?

Number of Non-Scalar Objects Dead Tree Elimination?

Number of Long doubles Scalar Value Expansion?

Number of int Method Specialization?

Machine
-Learned
Model

Ranking Plans

Let (i,p,h) represent a method i compiled with
a compilation plan p at a level of hotness h:

Total running time Compilation time
. of all invocations of (i,p,h) for (i,p,h)
Value(i,p,h) =
Number of invocations Threshold for h
of (i,p,h)

For each method i, select the top t plans for training of the SVM.
The valued of the lowest plan must be at least f % of the best.

In this research t =3, and f = 95%.

Using Learned Model

Interpreted Methods Compiled Methods
Virtual
Machine
Modifier
Queue
Compilation Plan
_____ v
B 00110100011001..001 v

Compiler

' Just-In-Time
-——- Modifier

00110000011000..000

_____ Strategy Control —l
1\ L

Learned
Model

Socket-Based Communication
Between Compiler and Model

(@) [T™] Request r-----

Testarossa Model

-----{ Response |+ (€)

File system

Used named pipes (Unix) to communicate
between Compiler and Model

Data Set Sizes

Merged Data Ranked Data (training)

: Unique Vector: Vector:
Data Unique Feature
Feature Instance Instances Classes Instance
Instances Classes) Vectors)
Vectors Ratio Ratio

1,175 1:1,320 2,326 949 1,094 1:2.12
1,153 1:1,368 2,213 1,590 1,108 1:1.99
1,201 1:2,118 2,073 1,379 1,069 1:1.94

Cold 1,551,545 1,421,717
Warm 1,577,157 1,455,947
Hot 2,543,564 2,229,364

Experimental Platform

e AMD Blade Server

— 16 nodes
* 2 Quad-Core Opteron/Node
* 2 GHz
8 GiB of RAM

* 20 GiB swap space
e CentOS GNU/Linux

 Development version of
Testarossa

StartUp x Throughput
Performance

StartUp Performance:

T

Start JVM Finish one iteration of Benchmark

Throughput Performance:

- j

Start JVM Finish ten iterations of Benchmark

StartUp Performance (SPECjvm98)

SPECjvm98 Performance (Start-up)

2.00 | I I | [
S ‘188
(/)]
O
O
% 1.60 T
()]
|_
£ 140
3
G
= 1.20
o
o=
o 1.00
()
>
g 0.80 =
o N

0.60

o o/ m m, 79 /3 /3 /8 4
Sg S

B H1(co,db,mpmt) [H2 (co,db,mp,rt) B H3 (co,db,mtrt) B H4 (co,mpmtrt) [] H5 (db,mp,mt,rt)

Compilation Time Reduction for
StartUp (SPEC jvm98)

SPECjvm98 Compilation Time (Start—up)

0.70 I | | [[
4y}
wn
S 0.60 E
(4]
17
O
~ 0.50
Qe
£
= 040 -
| -
S
T 0.30 =
=
£
8 020
(O]
=
S 010
oc
o0 “on, % Ve, Ty R, Rop Ry, foss e,
©re - 9%0/ e (o Ve
(o)

B H1 (co,db,mp,mt) [] H2 (co,db,mp,rty H H3 (co,dbmtrt) M H4 (comp,mtrt) [] H5 (db,mp,mt,rt)

Throughput Performance (SPECjvm98)

SPECjvm98 Performance (10 iterations)
1.10 | | | | |

1.00
ch
0.90 ==
0.80
0.70
0.60
0.50

Q o7 7 Y. Y/ /e
", 0 /770@9 o Pty eJ’lreO Wt o Ss '4"649

Relative Performance to Testarossa

B H1(co,db,mpmt) [J H2(co,dbmp,rt)y E H3(co,dbmtrt) M H4 (comp,mtrt) [] H5 (db,mp,mt,rt)

StartUp Performance DaCapo

DaCapo 9.12 Performance (Start—-up)
1.40 | | | | | | |

1.30

1.20

1.10

1.00

0.90

0.80

0.70

Relative Performance to Testarossa

0.60

0.50 :
Q. oy, Sop Top N2 by Ny, sy P, Sy, O Yen Al
O’Q % 'OSG o,) dG* GQ/.O/) Q /)f/oh/ /7706, Q/; G/'ege

B H1 (co,dbmpmt) [] H2 (co,db,mp,rt) I H3 (co,db,mtrt) [H4 (comp,mtrt) [] H5 (db,mp,mt,rt)

Throughput DaCapo

DaCapo 9.12 Performance (10 iterations)

1.20 | [| [[[[l
S 1.10 |
(7))
9 yo.
(4]
2 1.00 5
|_
o
g 0.90
c
=
S 080
g ==
(O]
o
Q 0.70
©
T 060
0.50

4 /4
Q l/ be 1./" GO//D Op /)Q .07‘/7 0//70' *(/S Q C';;/}) o (/,7 f 0/7) Q/‘?/) A4 [/@/_e

B H1 (co,db,mp,mt) [] H2 (co,db,mp,rt) I H3 (co,db,mtrt) [l H4 (co,mp,mt,rt) [] H5 (db,mp,mt,rt)

Influence of Inlining

For the previous performance results we collected
method features and applied the model before inlining.

Inlining may change method features significantly.

What would the results be if method features
were measured after inlining?

SPECjvm98 Performance (Start-up)

2.00 I | I ' ' ' ! ' !
StartUp
9
I Perf
: errormance
8 1.40
S []
(SPECjvm98)
g
g 1.00
3
£ 0.80 I I ﬁ
i
0.60 00/77,Of98806 /7’,0@96 /)71./7 /'nyreo /;90/{' /épeo /éss 'qllel_age

B H1 (co,db,mp,mt) [H2 (co,db,mp,rt) M H3 (co,db,mtrty Ml H4 (comp,mtrt) [H5 (db,mp,mt,rt)

After Inlining
Before Inlining

SPECjvm98 Performance (Start-up)

1.80 T T T T T T T T T

3

2 1.60

s

>

= 1.40

)

@

[$]

& 1.20

£

<]

=

& 1.00

o) 3

=

S

) 0.80

o

0.60 % %
’77'0,
[
Ss

B H1(codbmpmt) [H2(codbmprt) M H3(codbmtrt) M H4 (compmtrt) [HS (db,mpmtr)

Relative Performance (Testarossa Adaptive)

SPECjvm98 (start-up) - javac

< 2.00 T T T T T
=
g
2 1.80
«s
JavaC StartUp 3 160 I
Performance 7
2 140 @ Before inlining
:‘; [J After inlining
§ 1.20 n
£
2
o 1.00
o
o
=
T 080
@)
o
H1 H2 H3 H4 H5
SPECjvm98 (start-up) — jess
2.00 T T T T T
1.80
1.60
1.40 B Before inlining
f [After inlining JeSS Sta rtU p
X
1.20 =
Performance
1.00
0.80
HA1 H2 H3 H4 H5

SPECjvm98 Performance (10 iterations)
2.00 T T T T T T T T T

Throughput

1.60

Performance
- (SPECjvm98)
I el]

1.00 -
0.80 I
0.60 5

B H1 (codb,mpmt) [J H2(codbmprt) M H3 (codbmtrty M H4 (compmtrt)y [Hs (db,mp,mt,rt)
Before inlining

Relative Performance to Testarossa

After inlining

SPECjvm98 Performance (10 iterations)
1.80 T T T T T T T T T

1.60

1.40

1.20

1.00

& =
0.80 I
0.60 m

oo”’p %/, /;;,,? ,ey”e /‘904 /e,,ec /ess

Relative Performance to Testarossa

4,,%9
(S}

B H1 (codbmpmt) [J H2(codbmprt) M H3(codomtrt)y M H4 (compmtrt) [J HS (db,mp,mt.rt)

Relative Performance (Testarossa Adaptive)

javac

Throughput

Relative Performance (Testarossa Adaptive)

SPECjvm98 (10 iterations) — javac
2.00 T T | T T

1.80

1.60

1.40 @ Before inlining
] After inlining

1.20

1.00

0.80

H1

SPECjvm98 (10 iterations) — jess

2.00

1.80

1.60

1.40

jess

B Before inlining
O After inlining

1.20

Throughput

K

1.00

0.80

H1

H2

H3 H4 H5

What have we learned?

Overall: SVM-based models outperform
Testarossa’s heuristics for start-up performance.

— But it underperforms Testarossa for throughput
performance.

Surprising: significant reduction in compilation
time.

Puzzling: Collecting method features after inlining
did not yield greater performance gains.

Pleasantly positive: model generalized from SPEC
benchmaks to DaCapo.

