
PACMAN: Program-level
Approximately Optimal
Cache Management

Xiaoming Gu, Chen Ding
Department of Computer Science

University of Rochester

• What is PACMAN?

2

• An ongoing compiler study to reduce
cache misses using hardware bypassing
supports

• A famous video game

The Framework

3

Analysis
identify

references for
bypassing

tag
references with

bypassingTransformation

feedback

Outline

• Motivation

• Hardware Bypassing Support

• An Example

• Details of Analysis and Transformation

• Summary

4

Outline

• Motivation

• Hardware Bypassing Support

• An Example

• Details of Analysis and Transformation

• Summary

5

Motivation

• Running a sequential program alone on a
multi-core chip

• hard to parallelize the program

• running alone for no interference

• reduce cache misses

PACMAN: focus on reducing cache misses
for sequential programs running alone

6

Outline

• Motivation

• Hardware Bypassing Support

• An Example

• Details of Analysis and Transformation

• Summary

7

Normal LRU Inst.

8

evicted

Bypass LRU Inst.

9

evicted

Outline

• Motivation

• Hardware Bypassing Support

• An Example

• Details of Analysis and Transformation

• Summary

10

SOR
• Jacobi Successive Over-relaxation

• from NIST SciMark 2.0

• a classical stencil computation

• compiled by LLVM 2.7 using gold plugin with -O4

11

The Gap between LRU and OPT

12

NUM_ITERATIONS=10
M=N=512

• Two gaps

• The working sets (knees)
of OPT are much
smoother than LRU’s

gaps

The Transformation

Normal and bypass LRU
instructions mixed ==>
LRU Bypassing

13

The Improvement of PACMAN

NUM_ITERATIONS=10
M=N=512

•The gap at the
second working set
disappears!

14

Outline

• Motivation

• Hardware Bypassing Support

• An Example

• Details of Analysis and Transformation

• Summary

15

The Analysis

• Simulate OPT
• for a given cache configuration

• each run-time access has three fields
• data addr, static ref. ID, and bypassing flag (off by default)

• when an eviction happens, set bypassing flag on
for the previously last access to the victim

16

A1, A2, ..., Ai,, Aj, ..., AN

X is evictedX is accessed

no access to X
in between

set bypassing
flag on

The Analysis (cont’d)

• Simulate OPT (cont’d)

• calculate bypassing ratios for all memory
references

17

bypassing ratio of a reference =
#accesses generated by the reference and with bypassing flag on

#accesses generated by the reference

• the references with high bypassing ratios are the
candidates for bypassing

The Transformation
• Loop unrolling

• find out the target references in IR using
the candidates’ ref. IDs

• figure out the last touch to a cache line in
the innermost loop body
• the cache line size

• the array element size

• the loop step stride

• the array indexing

• separate the last touch using loop unrolling

• tag the last touch with bypass LRU

18

SOR by PACMAN

• Gim1[j] is the candidate

• only do bypassing for the last touch in the
innermost loop body

• spatial locality retained

• use loop unrolling to do separation in practice

19

NUM_ITERATIONS=10, M=N=512
fully-associative, 512KB, line size=64B

Why only the Second
Working Set Improved?

• PACMAN
simulation only
at the second
working set

• Reduce cache
misses for the
second working
set

20

do OPT simulation
at 512KB

Set-associative Cache

21

• Keep losing benefits on cache with lower
associativities

• The improvement is still significant

NUM_ITERATIONS=10
M=N=512

With a Different Input

• The improvement is scalable with input sizes

22

NUM_ITERATIONS=10
M=N=512

NUM_ITERATIONS=20
M=N=1024

8X accesses

Future Work

23

• extend PACMAN for general applications

• more realistic hardware environment

• multi-level pseudo-LRU cache

• the differences between loads and stores

• the interaction with prefetching

Summary

24

Use simple hardware bypassing supports

Find out bypassing references by simulating
OPT

Cache misses are reduced very close to the
optimal case

Achieve significant improvement even on
low associativity cache

The training results can be used for a real
run with a larger input size

Q & A
NOT

