
Compiler needs to drive the ISA
Arrvindh Shriraman

Simon Fraser University, Jan 1

with input from
Sandhya Dwarkadas, Michael Scott, Engin Ipek, and Chen Ding

1

Special thanks to feedback from NSF ACAR II Panel,
“What next in Instruction-Level-Parallelism research?”

Brief Introduction

I am a computer architect
you guys probably know more about compilers!

While many collaborators, opinions and
mistakes are my own

Non Goal : What should the architecture stack
should look like in the future ?

Goal : get compiler designers to actively
participate in defining HW-SW interface

2

Outline

Inefficiency of current microprocessors
Energy wall
RISC ISA
Where does energy go ?

Big and Morphable ISA

Heterogeneous execution substrate

3

Energy Wall
2014 2020

Total Si

Power
/Si

1 4 16

1 1 0.6

Usable
Si

2008
45nm 22nm 11nm

100% 25% 4%

Simple by design
focus on pipelineability and latency

Instructions encode little work
no parallelism within instructions
Instruction-parallelism reaching its limits

RISC Instructions

5

Classic study:
Tejas and Smith

(HW Overheads)2

Instr.
Parallelism

RISC Instructions (contd..)

OO HW
needs to scale resources quadratically
needs to reduce misses and branch penalty
quadratically

Pipelining small instructions is inefficient
fetch consumes 4x more energy than execute

6

10%

15%

6%

31%

38%
Fetch

Pipeline

Reg.

D$

Exe

Energy

Current ISAs - Do we need them ?

7

Tension between hardware and software

Software allowed to provide only limited info on
data types and operation semantics

 Not necessarily useful for hardware either
energy is the #1 constraint, not area or clock
HW needs to work hard to mine parallelism
does not support energy-efficient functional units

Hardware

Applications
ISA

Agenda

8

Need to perform more work per instruction

ISA needs app-specific information

Hardware needs to cut-down overheads

Outline

Inefficiency of current microprocessors

Dynamic Morphable ISA
Decoupled Multi-level ISA
Big Instructions
Application-based ISA extensions
Challenges

Heterogeneous execution substrate

9

De-coupled ISAs	

Two-levels of ISA abstraction
App ISA for customization, more info, and portability
HW ISA for platform-specific opt. and accelerators

Always-present virtual machine
can use rich SW program information
can use feedback from HW for dynamic optimization

10

Hardware

Applications

Hardware ISA

Application ISA
Code translator and

optimizer

Application ISA

Big Instructions
compound instructions that encode more work

Can capture relationship between operations
provides information about operation parallelism
enables hardware to exploit parallelism

11

D1 D2 D3 D4

SSE, AVX VLIW, EPIC
D1 D2 D3 D4

Austin TRIPS
D1 D2

D3

Application ISA

Custom instructions
library runtimes, C++ Boost, MATLAB, R, Sphinx
generate application-specific instructions

Static instructions
many applications have a small hot code-regions
70% code shared between applications

Dynamic instructions
enable software to add new instructions to ISA
90% coverage with 40,000 static instruction*

12* GreenDroid - HotChips 2010

Research Agenda (1/2)

What is the basic application ISA
X86, LLVM, RISC, Java bytecode, Nvidia PTX ?

How to specify and modify application ISA ?
pragmas, macro language ?
generate from hot path ?

13

How to enable software to make use of new ISA?
compiler generators ? Is that so crazy or feasible ?
how to alter the backend of a compiler at runtime ?

Research Agenda (2/2)

Reconsider Instruction semantics
do we need precise exceptions at the instruction level ?
atomicity of which operation guaranteed ?
major impact on hardware complexity

14

Example Designs

IBM System 38
Application ISA : TMI
Implementation ISA : IBM AS-400 decendants

Transmeta CMS (ahead of its time ?)
Application ISA : x86 for compatibility
Implementation ISA: VLIW for energy efficiency

 Nvidia CUDA
Application ISA : PTX
Implementation ISA : Nvidia GPUs

15

Outline

Inefficiency of current microprocessors

Dynamic Morphable ISA

Heterogeneous execution substrates
Architecture
Program state management
Examples

16

Accelerator-based architecture

Dedicated specialized hardware to improve
performance under same energy

Granularity
80s, floating point unit, co-processors
90s-00s : Vector units.
Future: GPU, DSP, and more...

17

CPU

Signal Crypto
Accelerator

GPU

Processor

New Challenge : Program State
Multicore CPU (e.g., Power6)

Hardware caching
Fine-grained sharing

18

Accelerators (e.g, GPU)

Scratchpad memories
Coarse-grain sharing

Minimal programmer effort

 SW cannot directly optimize
SW can optimize

 Weak memory models

Latency-optimized Throughput-optimized
small reg files (<128bytes)
large caches

large reg files. (2MB)
small cache
all L1s = L2 = 768KB

70% of on-chip mem.
software controlled

 90% of on-chip mem.
hardware controlled

per L1 = 64KB L2 = 4MB

Program state challenges

Where to stage data required by big instructions ?
registers, on-chip cache, memory
what about bandwidth ?

SW runtime to manage on-chip caches ?
similar to GC, except for physical storage,
on-chip memory shared by many tasks
need to organize private and shared-data

Managing program state in SW too hard ?
can we afford not to, HW too reactive and unoptimal

19

New Challenges: Task Mapping

20

0

2.5

5.0

7.5

10.0

0 10 20 30 40 50 60 70 80 90 100

S
pe

ed
up

% on CPU

Adaptive Task Mapping [Micro 2010]

Matrix-Multiplication

Task : Bag of instructions
How to choose which tasks to run on accelerator?

How to choose accelerator?

Example systems
Focus : design time chip generator for embedded

applications are reasonably stable
profile application and create HW for hot-code

Industry : Tensilica Systems
new language to specify extension units and instructions
automate integration of special-purpose HW w/ CPU
generates compiler backend for new instructions

Academia : Conservation Cores [UCSD]
generated HW from profiled hot-code in program
cold-code on CPU; hot-code on specialized HW

21

Summary

Decouple ISA

Application ISA
HLLs can communicate more information
enable more dynamic optimizations
allow for dynamic extensions for app-customization

Heterogeneous accelerator cores
new compute units driven by software libraries
SW needs to manage on-chip program-state

22

Hardware

Applications

Hardware ISA

Application ISA
Software code translator

23

