Compiler needs to drive the ISA

Arrvindh Shriraman
LI 5 . .
Simon Fraser University, Jan 1

with 1nput from
Sandhya Dwarkadas, Michael Scott, Engin Ipek, and Chen Ding

[®6] UNIVERSITYROCHESTER
@/

Special thanks to feedback from NSF ACAR Il Panel,
“What next in Instruction-Level-Parallelism research?”

Srief Introduction

x | am a computer architect
— you guys probably know more about compilers!

x \While many collaborators, opinions and
mistakes are my own

x Non Goal : What should the architecture stack
should look like in the future ?

x (Goal : get compiler designers to actively
participate in defining HW-SW interface

Outline

® [nefficiency of current microprocessors

— Energy wall
- RISC ISA
— Where does energy go ?

x Big and Morphable ISA

®x Heterogeneous execution substrate

—nergy Wall

2008
45nm
Total Si 1
Power 1
/S
Usable

Sl

2014

2020

. _ \
RISC Instructions fguaey

x Simple by design
— focus on pipelineability and latency

® |nstructions encode little work
— no parallelism within instructions
— Instruction-parallelism reaching its limits

Instr.
Parallelism

eon
gzip
perbmk

Classic study:
Tejas and Smith

log2 (window s \

(HW Overheads)?___,

RISC Instructions (contd..)

x OO0 RW

— needs to scale resources quadratically
— needs to reduce misses and branch penalty
quadratically

x Pipelining small instructions Is inefficient
— fetch consumes 4x more energy than execute

Energy
D$

15%
Exe6%
Pipeline
31%

Fetch
38%

Current ISAs - Do we need them ?

®x [ension between hardware and software

Applications

YA
Hardware

x Software allowed to provide only limited info on
data types and operation semantics

= Not necessarily useful for hardware either
— energy is the #1 constraint, not area or clock

— HW needs to work hard to mine parallelism

— does not support energy-efficient functional units

Agenda

) T
Y W 7

\e ¢ /\ il
! : S
-

Need to perform more work per instruction

ISA needs app-specific information

Hardware needs to cut-down overheads

Outline

® |nefficiency of current microprocessors

x Dynamic Morphable ISA
— Decoupled Multi-level ISA
— Big Instructions
— Application-based ISA extensions
— Challenges

®x Heterogeneous execution substrate

De-coupled ISAs

x [woO-levels of ISA abstraction
— App ISA for customization, more info, and portability
- HW ISA for platform-specific opt. and accelerators

® Always-present virtual machine
— can use rich SW program information
— can use feedback from HW for dynamic optimization

Applications

Application ISA

Code translator and

optimizer
————— Hardware |ISA

Hardware

10

Application ISA g

® Big Instructions

— compound instructions that encode more work

x Can capture relationship between operations
— provides information about operation parallelism

— enables hardware to exploit parallelism

SSE, AVX

D1

D2

D3

D4

\%

W, EPIC

D1

D2

D3

D4

Austin TRIPS

D1

N

D2

/

D3

11

Application ISA

x Custom instructions

— library runtimes, C++ Boost, MATLAB, R, Sphinx
— generate application-specific instructions

» Static instructions

— many applications have a small hot code-regions
— /0% code shared between applications

®x Dynamic instructions

— enable software to add new instructions to ISA
— 90% coverage with 40,000 static instruction®

* GreenDroid - HotChips 2010

12

Research Agenda (1/2)

x \Vhat is the basic application ISA
— X806, LLVM, RISC, Java bytecode, Nvidia PTX *?

» How to specify and modify application ISA ?
— pragmas, macro language ?
— generate from hot path 7

x How to enable software to make use of new ISA?
— compiler generators ? Is that so crazy or feasible 7
— how to alter the backend of a compiler at runtime “?

13

Research Agenda (2/2)

x Reconsider Instruction semantics

— do we need precise exceptions at the instruction level 7
— atomicity of which operation guaranteed 7
— major iImpact on hardware complexity

14

—xample Designs

x |[BM System 38
— Application ISA : TMI
— |Implementation ISA : IBM AS-400 decendants

x [ransmeta CMS (ahead of its time ?)
— Application ISA : x86 for compatibility
— |Implementation ISA: VLIW for energy efficiency

= Nvidia CUDA
— Application ISA: PTX
— |Implementation ISA : Nvidia GPUs

15

Outline

x |nefficiency of current microprocessors

x Dynamic Morphable ISA

® Heterogeneous execution sulbstrates
— Architecture
— Program state management
— Examples

16

Accelerator-based architecture AL

®x Dedicated specialized hardware to improve

performance under same energy

x (Granularity
— 80s, floating point unit, co-processors
— 90s-00s : Vector units.
— Future: GPU, DSP, and more...

T = - - - - - -
----,

17

New Challenge :

Multicore CPU ¢.g., Powers)

— Hardware caching
— Fine-grained sharing

v Minimal programmer effort

Latency-optimized

— small reg files (<128bytes)
— large caches

per L1 =064KB L2 =4MB

Program State

Accelerators (.g, GPU)

— Scratchpad memories
— (Coarse-grain sharing

v SW can optimize

N

Throughput-optimized
— large reg files. (2MB)
— small cache

all L1s = L2 = 768KB

/0% of on-chip mem.

software controlled
18

Program state challenges

x \Where to stage data required by big instructions ?
— registers, on-chip cache, memory
— what about bandwidth ?

x SW runtime to manage on-chip caches ?
— similar to GC, except for physical storage,
— on-chip memory shared by many tasks
— need to organize private and shared-data

x Managing program state in SW too hard
— can we afford not to, HW too reactive and unoptimal

19

New Challenges: Task Mapping

Task : Bag of instructions
x How to choose which tasks to run on accelerator?

Adaptive Task Mapping [Micro 2010]

x How to choose accelerator?

10.0

Matrix-Multiplication

0 10 20 30 40 50 60 70 80 90 100

% on CPU
20

—Xample systems

®x [Focus : design time chip generator for embedded

— applications are reasonably stable
— profile application and create HW for hot-code

x |ndustry : Tensilica Systems

— new language to specify extension units and instructions
— automate integration of special-purpose HW w/ CPU
— generates compiler backend for new instructions

x Academia : Conservation Cores [UCSD]
— generated HW from profiled hot-code in program
— cold-code on CPU; hot-code on specialized HW

21

Summary

x Decouple ISA Applications

Software code translator
EEEEESsssssssssn———— [ard\Ware |SA

Hardware

Application ISA

— HLLs can communicate more information
— enable more dynamic optimizations
— allow for dynamic extensions for app-customization

®x Heterogeneous accelerator cores <&
— new compute units driven by software libraries

— SW needs to manage on-chip program-state
22

