
1

Compiling X10 for
Scalable High Performance

David Cunningham, David Grove, Igor Peshansky,
Vijay Saraswat, Olivier Tardieu

IBM Watson
8th Workshop on Compiler-Driven Performance

This material is based upon work supported in part by the
Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

2

Talk Outline

• What is X10? Why should I care?

• X10 in a Nutshell

• HPC Challenge (Class 2) Results

• Compilation Challenges & Opportunities

• Conclusions

3

What is X10?

 X10 is a new language developed in the IBM PERCS
project as part of the DARPA program on High
Productivity Computing Systems (HPCS)

 X10 is an instance of the APGAS programming model in
the Java family of languages

 X10 is an open-source project (http://x10-lang.org)

http://x10-lang.org/

4

Road Runner: Cell-accelerated Opteron

Multi-core processors, with
accelerators

e.g. Sun Niagara
e.g. Intel multicore, IXP

e.g. IBM Cell
e.g. GPGPUs

Blue GenePower5 Clusters

. . .

Memory

PEs,
SMP Node

PEs,

.

Memory

PEs,
SMP Node

PEs,

Interconnect

P7 supernode

• • •
(100’s of such
cluster nodes)

I/O
gateway
nodes

“Scalable Unit” Cluster Interconnect Switch/Fabric

The current architectural landscape

5

The current architectural landscape
Substantial architectural

innovation is anticipated over
the next ten years.
- Hardware situation remains

murky, but programmers
need stable interfaces to
develop applications

Heterogenous accelerator-
based systems will exist,
raising serious programmability
challenges.
- Programmers must

choreograph interactions
between heterogenous
processors, memory
subsystems.

Multicore systems will
dramatically raise the number
of cores available to
applications.
- Programmers must

understand concurrent
structure of their
applications.

Applications seeking to
leverage these architectures
will need to go beyond data-
parallel, globally synchronizing
MPI model.

These changes, while most
profound for HPC now, will
change the face of commercial
computing over time.

6

Fundamental Challenge

 What is a good Programming Model for these
machines?
- How do we migrate existing users beyond MPI so

that they can productively use these machines,
specifically for HPC, at scale?

- How do we make it easy for new classes of users
to program such machines?

 The need for a common programming
model has never been more urgent.

7

Storage classes:
 Activity-local
 Place-local

 Partitioned global
 Immutable

Locally Synchronous:
Guaranteed coherence for
local heap  sequential

consistency

Globally Asynchronous:
No ordering of inter-place
activities  use explicit

synchronization for coherence

PGAS:
Replicated Data
Local Heap
Remote Heap

Place = collection
of resident activities

and objects

Ordering Constraints (Memory Model)

Activity = sequential
computation that runs

at a place

Locality Rule:
Any access to a mutable

datum must be performed
by a local activity 

remote data accesses can
be performed by creating

remote activities

X10 Concepts

8

X10 Constructs

Fine grained concurrency

• async S

Atomicity

• atomic S

• when (c) S

Global data-structures

• points, regions,
distributions, arrays

Place-shifting operations

• at (P) S

Ordering

• finish S

• clock

Two basic ideas: Places and Asynchrony

9

Parallel HelloWorld

import x10.io.Console;

class HelloWorldPar {
 public static def main(args:Rail[String]):void {
 finish ateach (p in Dist.makeUnique()) {
 Console.OUT.println("Hello World from Place" +p);
 }
 }
}

(%1) x10c++ -o HelloWorldPar -O HelloWorldPar.x10

(%2) mpirun -n 4 HelloWorldPar
Hello World from Place(0)
Hello World from Place(2)
Hello World from Place(3)
Hello World from Place(1)

(%3)

10

public class Fib {
 /**
 * Used as an in-out parameter to the computation.
 * When the Fib object is created, r indicates the number to compute.
 * After the computation has completed, r holds the result (Fib(r)).
 */
 var r:int;

 public def run() {
 if (r<2) return; // r already contains Fib(r)

 val f1 = new Fib(r-1);
 val f2 = new Fib(r-2);
 finish {
 async f1.run();
 f2.run();
 }
 r = f1.r + f2.r;
 }
}

 }

Fibonacci (brute force)

11

Overview of Features
 Many sequential features of

Java inherited unchanged
 Classes (w/ single

inheritance)
Interfaces, (w/ multiple

inheritance)
Instance and static fields
Constructors, (static)

initializers
Overloaded, over-rideable

methods
Garbage collection

 Structs

 Closures

 Points, Regions, Distributions,
Arrays

 Substantial extensions to the
type system
Dependent types
Generic types
Function types
Type definitions, inference

 Concurrency
Fine-grained concurrency:

 async (p,l) S
Atomicity

 atomic (s)
Ordering

 L: finish S
Data-dependent

synchronization
 when (c) S

12

X10 Compilation

X10 Compiler Front End

X10 Source Front End
AST-based optimizations

AST- Lowering

Java Back EndC++ Back End

X10 AST

JavaC++

X10 AST

JVM

C++ Post-compiler javac

BytecodeExecutable

XRX C++ Natives XRX Java Natives

X10RT/PGAS

C++ Backend Java Backend

X10 Project Status

 X10 is an open source project (Eclipse Public License)
 Documentation, releases, mailing lists, code, etc. all

publicly available via http://x10-lang.org

 XRX: X10 Runtime in X10 (14kloc and growing)

 X10 1.7.x releases throughout 2009 (Java & C++)

 X10 2.0 will be released this week (rc1 available now)
Java: any platform with Java 5

Single process (all places in 1 JVM)
C++:

Multi-process (1 place per process)
aix, linux, cygwin, macos, solaris
x86, x86_64, PowerPC, Sparc
x10rt: APGAS runtime (binary only) or MPI (open source)

http://x10-lang.org/

HPC Challenge Benchmarks

• Data taken from X10/UPC HPCC'09 submission
– (full details: http://www.x10-lang.org/hpcc09)

• Used Power 5+ Cluster at POK (v20)
– P575+, 1.9GHz, 16CPUs/node; 64GB DDR2 memory/node; 32

compute nodes, 28 dedicated, 4 shared;gpfs

– Dual plane HPS switch

– Rated performance: 7.6GFlops/s per CPU

• In the process of gathering final data for SC'09 BOF

http://www.x10-lang.org/hpcc09

1 2 4 8 16 32

0

500

1000

1500

2000

2500

HPL

UPC
X10

Nodes

G
F

L
O

P
s

1 2 4 8 16 32

0

10

20

30

40

50

60

70

80

FFT

UPC
X10

Nodes

G
F

L
O

P
s

1 2 4 8 16 32

0

5

10

15

20

25

30

35

40

45

50

Random Access

UPC
X10

Nodes

M
U

P
s

1 2 4 8 16 32

0

500

1000

1500

2000

2500

3000

Stream

UPC
X10

Nodes

G
B

/s

X10 Compilation Challenges

• All of the usual issues with OO languages
– Virtual/interface dispatch
– Small methods, class libraries & frameworks
– …
– plus closures and higher-order functions

• Concurrency/Communication
– Recognize idiomatic async/finish patterns

reduce async termination traffic
– Optimize message traffic

hoist “loop invariant” messages
eliminate unused object fields from messages

Random Access
 static def runBenchmark(rails: ValRail[Rail[Long]],
 logLocalTableSize: Int, numUpdates: Long) {
 val mask = (1<<logLocalTableSize)-1;
 val local_updates = numUpdates / Place.MAX_PLACES;
 finish for ((p) in 0..Place.MAX_PLACES-1) {
 async (Place.places(p))
 @Immediate finish {
 var ran:Long = HPCC_starts(p*(numUpdates/Place.MAX_PLACES));

 for (var i:Long=0 ; i<local_updates ; ++i) {
 val place_id = ((ran>>logLocalTableSize) & (Place.MAX_PLACES-1)) as Int;
 val index = (ran & mask as Int);
 val update = ran;

 val dest = Place.places(place_id);
 val rail = rails(place_id) as Rail[Long]{self.at(dest)};
 @Immediate async (dest) {
 rail(index) ^= update;
 }
 ran = (ran << 1) ^ (ran<0L ? POLY : 0L);
 } } } }

X10 Compilation Opportunities

• Exploiting dependent types
Drive method specialization and loop versioning

• User directed concurrency refactoring, annotation-
driven loop transformations, use IDE tooling to
enable iterative loop between user & compiler.

• X10 compiled to both C++ and Java
Neither is always the best choice. Are there
interesting things to be learned by studying
together?

Conclusions

• X10/APGAS: a programming language/model for
multi-core, clusters, accelerators

• Abundance of interesting compilation challenges

• X10 Innovaton Grants
http://www.ibm.com/developerworks/university/innovation/x10.html
Short timeline: due 11/25, awarded late 2009/early 2010
course materials, applications/frameworks/DSLs, tools

• More information on X10: http://x10-lang.org

http://www.ibm.com/developerworks/university/innovation/x10.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

