
Increasing the Scope and Resolution
of Interprocedural Static Single

Assignment
Silvian Calman Jianwen Zhu

University of Toronto, Toronto, Canada

November 2, 2009

www.eecg.toronto.edu/~calman

Interprocedural SSA (ISSA)

• SSA replaces the uses of scalar stack variables
with a single definition

• SSA is widely used in compilers

– Constant propagation, induction variable
identification, etc.

• ISSA expands scope to include globals,
singleton heap variables, and record elements

– Definitions can be used in other procedures

Interprocedural SSA

• Two additional challenges

– Merge points due to pointer dereferences

– Passing values across call sites

• Intermediate Representation Extensions

– p.fS(var,curr,new)

– p.fL(<var1,val1>, ...,<varn,valn>)

– fV
<var,p>(<ci1,val1>, ...)

– p .fC
<var,ci>(<func1,val1>, ...)

Example
int y = 5, z = 10,
*x, **g;
C() { print(**g); }
B() { *g = &z; }
main() {
g = &x;
x = &y;

S1: B();
**g = 20;

S2: C();
}

C() {
x2 = fV

<x,C>(CI2 ,x1);
y2 = fV

<y,C>(CI2 ,y1);
z2 = fV

<z,C>(CI2 ,z1);
print(x2.fL(<&y, y2>,

<&z, z2>));
}
B() {}
main() {
CI1: B();
x1 = fC

<x,CI1>(B,&z);
y1 = x1.fS(&y,5,20);
z1 = x1.fS(&z,10,20);

CI2: C();
}

int y = 5, z = 10,
*x, **g;

C() {
print(20);
}

main() {
C();
}

ISSA Generation

Field-Sensitive
Pointer
Analysis Dereference

Conversion
Pass values at

call sites

f Placement

Copy
Propagation

Liveness
Analysis

Choose SSA
Variables

fS,fL

fC,fV

Presentation Overview

• ISSA Generation

– Copy propagation

– Liveness analysis

– Pointer analysis

– Constant propagation

• Conclusions

Experimental Setup

• Setup
– Dual Core 1.66 GHz, L1 32 KB/ L2 2 MB Cache
– Ubuntu (64-bit OS)
– 4 GB Memory

• Benchmarks
– MediaBench
– SPEC2K with exception of gcc and vortex

• LLVM
• Passes applied: SSA, Constant propagation

(interprocedural), aggressive dead code removal,
instruction combining

• Various analyses (dominator tree, call graph, etc.)

Copy Propagation

• Replaces target of an assignment with value at
usage points

• Fold fS, fL, fV, fC, and f instructions

• Copy propagation helps by:
– Reducing IR size

– Correlating definitions with uses while removing
false merge points

• How do we interpret an interprocedural
value?

Interprocedural Value

• Definition for instruction I in procedure P

– Value of I in the last call frame of P on the stack, or
otherwise (P is not on the stack) value of I in the
last invocation of P

• Benefits

– Value in SSA equals a value in ISSA

• Can directly construct ISSA on IR in SSA form

– Folding of fV instructions is trivial

• Folded whenever it merges the same value

Problem of Propagating through fC

• Folding fC instructions not as simple as fV

instructions
– Some fC instructions maintain values of overwritten

expressions
– In traditional SSA form

• f instructions are inserted at entries to cycles
• Merge different values

– Different
• fC instruction can merge the same value but we might NOT

be allowed to fold them
• Depends on usage point

– Violate our definition for interprocedural value

Problem of Propagating through fC

int Sum(int a,int b, int c) {
tmp=a+b+c; return tmp;

}
void main() {

int e = Sum(1,2,3);
int f = Sum(20,21,315);
printf(f,e);

}

f=fC of second call. value=tmp=a+b+c where
a=20,b=21,c=315

StructPtr recursiveProc(StructPtr a, StructPtr b) {

resA = recursiveProc(a->right,b->right);

resB = recursiveProc(a->left,b->left);
if (resA==resB) {

....
}

}

Pointer produced a few
invocations ago

Pointer produced in the last
invocation

If indiscriminate propagation of fC, we
come to wrong conclusion that branch is

always taken. Can’t sub any fC as it
violates our definition.

e=fC of first call. value=tmp=a+b+c where
a=1,b=2,c=3

Propagating through fC

• Can do so when fC merges a constant

• Can do so when fC merges the same instruction V
in procedure P
– P and current procedure not in the same maximal

Strongly Connected Component

– At usage point, fC corresponds to last invocation of P

• Copy propagation
– Reduced fC and fV instructions by 44.5%

– Folded 30% of fV instructions with multiple operands

Liveness Analysis

• Pruned SSA does not insert f instructions that will not
be used
– Using liveness analysis to determine where a f is redundant

• Our liveness analysis constrains insertion of fC and fV

instructions
– Insert fV instructions only for variables that may be written

prior to some invocation of a procedure
– Insert fC instructions only for variables that may be read

after some invocation of the target procedure
– We apply these conditions by :

• Identifying the set of variables that may be written before a
procedure

• Identifying the set of variables that may be read after a procedure

• Reduced fC and fV instructions by 23.3%

Pointer Analysis

• Evaluated the impact of the pointer analysis
on the input and output sets (number of
variables) that must be propagated at call sites

• Comparison between
– Field-Sensitive and Field-Insensitive pointer

analysis (LLVM infrastructure)

• Showed the Field-Sensitive pointer analysis
reduces number of variables propagated
across call sites by a factor of 12.1

Constant Propagation

• Applied constant propagation on the ISSA
form

– Sparse Conditional Constant Propagation

– Constant folding and branch resolution

• Demonstrate benefit

– Folded an additional 11.8% instructions over the
LLVM infrastructure

– Removed 5.6 additional basic blocks as a result

Constant Propagation Extension

• Context-Sensitive
– Keep track of context-specific values in a map

– Restricted to one-level context-sensitivity

• Identify and apply preconditions
– Conditions that must be true when reaching a

program point

– Restricted to indirect call sites

• Runtime of algorithm was in milliseconds

• Constant folded an additional 15.3% of
instructions over the LLVM infrastructure

Comparison with other ISSA

• Greater scope

– SSA variables consist of singular heap locations and
elements of records

• Interprocedural value

• Higher resolution since each SSA variable
corresponds to one memory location

– No may-def/use relation

– We replace 1.7 times more load instructions with
the corresponding definition

Related Work

• Cytron and Gershbein. Efficient accommodation
of may-alias information in SSA form. (PLDI’93)

• Liao, S.W. SUIF Explorer: An interactive and
interprocedural parallelizer. (Ph.D. theis)

• Staiger et al. Interprocedural Static Single
Assignment Form. (WCRE’07)
– Compared ISSA construction using Steensgaard’s and

Andersen’s pointer analysis

– ISSA form stored in separate data structure

– May-def/use relations

Conclusions

• Proposed ISSA construction, which includes

– Copy propagation, liveness analysis, handling
singleton heap variables

– Showed benefit to constant propagation

• MediaBench benchmarks performed better

– Folded f instructions and runtime

– No recursion or complex abstract data structures

