Increasing the Scope and Resolution
of Interprocedural Static Single

Assignment
Silvian Calman Jianwen Zhu

University of Toronto, Toronto, Canada
November 2, 2009

www.eecg.toronto.edu/~calman

Interprocedural SSA (ISSA)

* SSA replaces the uses of scalar stack variables
with a single definition
e SSA is widely used in compilers

— Constant propagation, induction variable
identification, etc.

* |SSA expands scope to include globals,
singleton heap variables, and record elements

— Definitions can be used in other procedures

Interprocedural SSA

 Two additional challenges
— Merge points due to pointer dereferences
— Passing values across call sites

* Intermediate Representation Extensions
— p.d>(var,curr,new)
— p.¢t(<vary,val,>, ...,<var_val >)
— ¢V L arps(<ciy,valy>, ...)

— P .9 aras(<funcyval;>, ...)

Example

int y=5,z=10, C(){

*y kK
X, "8,

x2 =¢V_ .(Cl, ,x1);

<x,C>

C() { print(**g);} V2= (|>V<yC>(C|z ,¥1);

B(){*g=8&z}
main() {

g = &x;

X =&y,
S1: B();

**g = 20;
S2: C();

}

22 =¢",, (Cl, ,z1);
print(x2.¢Y(<&y, y2>,

<&z, z22>));

}

B() {}

main() {

Cl,: B();
x1 = (I)C<X,CI1>(BI&Z);
vyl =x1.>(&y,5,20);
z1 = x1.9>(&z,10,20);

Cl,: C();

}

int y=5,z=10,
*X, **g’

C() {
print(20);
}

main() {
C();
}

Field-Sensitive
Pointer

Analysis

Dereference

ISSA Generation

¢°,¢"

Choose SSA
Variables

Conve rsiV

Liveness
Analysis

Pass values at
call sites

%9

¢ Placement

Copy
Propagation

Presentation Overview

* ISSA Generation
— Copy propagation
— Liveness analysis
— Pointer analysis
— Constant propagation

e Conclusions

Experimental Setup

* Setup
— Dual Core 1.66 GHz, L1 32 KB/ L2 2 MB Cache
— Ubuntu (64-bit OS)
— 4 GB Memory

 Benchmarks
— MediaBench
— SPEC2K with exception of gcc and vortex

 LLVM

* Passes applied: SSA, Constant propagation
(interprocedural), aggressive dead code removal,
instruction combining

e Various analyses (dominator tree, call graph, etc.)

Copy Propagation

Replaces target of an assignment with value at
usage points

Fold ¢°, ¢4, ¢V, %, and ¢ instructions

Copy propagation helps by:

— Reducing IR size

— Correlating definitions with uses while removing
false merge points

How do we interpret an interprocedural
value?

Interprocedural Value

* Definition for instruction / in procedure P

— Value of I in the last call frame of P on the stack, or
otherwise (P is not on the stack) value of / in the
last invocation of P

* Benefits
— Value in SSA equals a value in ISSA
e Candirectly construct ISSA on IR in SSA form
— Folding of ¢V instructions is trivial

* Folded whenever it merges the same value

Problem of Propagating through ¢°

* Folding ¢¢ instructions not as simple as ¢V
Instructions
— Some ¢° instructions maintain values of overwritten
expressions
— In traditional SSA form

* (¢ instructions are inserted at entries to cycles
* Merge different values

— Different

* ¢ instruction can merge the same value but we might NOT
be allowed to fold them

* Depends on usage point
— Violate our definition for interprocedural value

Problem of Propagating through ¢°

int Sum(int a,int b, int c) {
tmp=a+b+c; return tmp;

e=¢¢ of first call. value=tmp=a+b+c where

} a=1b=2c=3
void main
: ~ f=¢¢ of second call. value=tmp=a+b+c where
inte=Sum(1,2 =20 b=21 c=315
int f = Sum(20,21,315); TS
printf(f,e);
!

Pointer produced a few

StructPtr recursiveProc(StructPtr a, StructPtr b _)
invocations ago

resA = recursiveProc(a->right,b->right);]]
Pointer produced in the last

invocation

resB = recursiveProc(a->left,b->left);

if (resA==resB) { If indiscriminate propagation of ¢¢, we
come to wrong conclusion that branch is
} always taken. Can’t sub any ¢° as it

} violates our definition.

Propagating through ¢¢

* Can dosowhen ¢* merges a constant
* Can do so when ¢¢ merges the same instruction V
in procedure P

— P and current procedure not in the same maximal
Strongly Connected Component

— At usage point, ¢¢ corresponds to last invocation of P
* Copy propagation

— Reduced ¢¢and ¢V instructions by 44.5%

— Folded 30% of ¢V instructions with multiple operands

Liveness Analysis

* Pruned SSA does not insert ¢ instructions that will not
be used
— Using liveness analysis to determine where a ¢ is redundant

* Our liveness analysis constrains insertion of ¢¢ and ¢V
Instructions

— Insert ¢V instructions only for variables that may be written
prior to some invocation of a procedure

— Insert ¢¢ instructions only for variables that may be read
after some invocation of the target procedure

— We apply these conditions by :

 |dentifying the set of variables that may be written before a
procedure
* |dentifying the set of variables that may be read after a procedure

* Reduced ¢¢ and ¢V instructions by 23.3%

Pointer Analysis

* Evaluated the impact of the pointer analysis
on the input and output sets (number of
variables) that must be propagated at call sites

 Comparison between
— Field-Sensitive and Field-Insensitive pointer
analysis (LLVM infrastructure)
 Showed the Field-Sensitive pointer analysis
reduces number of variables propagated
across call sites by a factor of 12.1

Constant Propagation

* Applied constant propagation on the ISSA
form

— Sparse Conditional Constant Propagation
— Constant folding and branch resolution
* Demonstrate benefit

— Folded an additional 11.8% instructions over the
LLVM infrastructure

— Removed 5.6 additional basic blocks as a result

Constant Propagation Extension

Context-Sensitive

— Keep track of context-specific values in a map
— Restricted to one-level context-sensitivity
ldentify and apply preconditions

— Conditions that must be true when reaching a
program point

— Restricted to indirect call sites
Runtime of algorithm was in milliseconds

Constant folded an additional 15.3% of
instructions over the LLVM infrastructure

Comparison with other ISSA

* Greater scope

— SSA variables consist of singular heap locations and
elements of records

* |Interprocedural value

* Higher resolution since each SSA variable
corresponds to one memory location

— No may-def/use relation

— We replace 1.7 times more load instructions with
the corresponding definition

Related Work

e Cytron and Gershbein. Efficient accommodation
of may-alias information in SSA form. (PLDI’93)

* Liao, S.W. SUIF Explorer: An interactive anc
interprocedural parallelizer. (Ph.D. theis)

* Staiger et al. Interprocedural Static Single
Assignment Form. (WCRE'07)

— Compared ISSA construction using Steensgaard’s and
Andersen’s pointer analysis

— |ISSA form stored in separate data structure
— May-def/use relations

Conclusions

* Proposed ISSA construction, which includes

— Copy propagation, liveness analysis, handling
singleton heap variables

— Showed benefit to constant propagation
 MediaBench benchmarks performed better

— Folded ¢ instructions and runtime
— No recursion or complex abstract data structures

