Dataflow Analysis
of
Computer Game Narratives

Clark Verbrugge
Peng Zhang

McGill University

i 11

October 30, 2008
CDPO0O8

Computer games have narratives

A story through events, choices
RPG, Adventure, FPS

Should be consistent
Appropriate responses 1n all eventualities
Greater scale => greater complexity

Large virtual world, multiple interacting events

Easy to make mistakes...

Game narratives often have tlaws

Non-sequiturs

Unwinnable situations
“pointlessness”

Unanticipated game states
Would be nice to analyze narratives

Detect flaws

Ensure good properties

Narrative model
Verification
Datatlow analysis
Experiments

Future Work & Conclusions

Need a well-defined target

Graphics, input mechanism, etc. secondary

Adventure (Interactive Fiction) games

“Pure” narrative — limited eye candy

Covers essential narrative features

Formal representation

Industry models ad hoc, incomplete

Existing IF languages messy

(P)NFG

Minimalist language for expressing an IF narrative
All essential narrative features

Simple but expressive grammar
Syntactic sugar added

Simple operational model

“Compiles” down to a well-defined Petri Net model

Flexible low-level verification/analysis

IF games:

Player directs a game avatar through a virtual world
World includes objects, locations (rooms)

Avatar responds to commands
Player input
Perform actions in the game world

Narrative progress through object, state interactions

Narrative components:

Objects

State variables
Booleans, counters
Location (rooms)

Tree-containment

Actions

Player-invoked (input event)

Test & modify state

state/location assignment, sequence, conditionals, output

no loops!

e.g., an object:

object pumpkin {
state { 1lit }
}

And an action:

(you,light,pumpkin) {
if ('pumpkin.lit) {
+pumpkin.lit;
“Is it Halloween already?”;
} else {
“It's already 1lit!”;

Narrative Model

= Operational behaviour

Narrative model
Verification
Datatlow analysis
Experiments

Future Work & Conclusions

Ensure good behaviour
E.g., “winnability”
Basic state search problem

Is there a winning path from the current state?

List all winning paths.
Backtracking search for winning states
Try all sequences of actions from initial state

Reaching a winning game state gives game solution

Brute force:

Action A Action B

for all possible actions

A large state-space to search:

Deep + large branching factor => not practical

Basic searching optimizations

Bounded depth
Cycle detection

Catches empty/null moves as well
Error state detection

Recognize rejected action sequences

Search cache

Can we do better with high level game information?

Narrative model
Verification
Datatlow analysis
Experiments

Future Work & Conclusions

Improve verification with HLL game information
Dataflow on game narrative
Heuristic observations

Actions are not entirely independent

“put on mittens” -> “put on ring”

“light candle” when the candle 1sn't around

Cause of excessive backtracking

And increased branching factor

A large number of action-pairs do not make sense

AQT analysis of actions for better search decisions

Two basic analyses of each game action

Post-conditions
Pre-conditions

Flow abstract game state through, see etfects

Help figure out which actions follow which

Reduce branching factor in search

What state does the action guarantee?

Similar to constant propagation:

Boolean object states
object.state {bottom, true, false, top}
Enumerated locations

object.location {bottom, locl1, loc2, ..., top}

!os!-!on!!!!on !nalys!s

pumpkin:T
pumpkin.lit:T

Post-Condition Analysis

pumpkin:T
pumpkin.lit:T

pumpkin:desk
pumpkin.lit:T

Post-Condition Analysis

pumpkin:desk
pumpkin.lit:false

pumpkin:desk
pumpkin.lit:true

Post-Condition Analysis

move pumpkin from player to desk;

v

if ('pumpkin.lit)

pumpkin:desk

pumpkin:desk
pumpkin.lit:false

pumpkin:desk
pumpkin.lit:true

pumpkin.lit:true

“You light the pumpkin”;

| |

Post-Condition Analysis

move pumpkin from player to desk;

v

if ('pumpkin.lit)

i

+pumpkin.lit;

pumpkin:desk
pumpkin.lit:true

pumpkin:desk
pumpkin.lit:true

pumpkin:desk
v pumpkin.lit:true

Post-Condition Analysis

pumpkin:desk Y
pumpkin.lit:true

Pre-condition analysis

Backward analogue of post-condition analysis

What conditions does an action require?

Require for correctness

Require in order to have a useful effect? (later)

re-Condition Analysis

pumpkin:T
pumpkin.lit:T

Pre-Condition Analysis

pumpkin:T
pumpkin.lit:T

pumpkin:T
pumpkin.lit:T

Pre-Condition Analysis

move pumpkin from player to desk;

v

if ('pumpkin.lit)

i

+pumpkin.lit;

pumpkin:T
pumpkin.lit:T

pumpkin:T
pumpkin.lit:T

pumpkin:T
pumpkin.lit:T

Pre-Condition Analysis

move pumpkin from player to desk;

v

if ('pumpkin.lit)

pumpkin:T
pumpkin.lit:false

pumpkin:T
pumpkin.lit:T

pumpkin:T
pumpkin.lit:T

“You light the pumpkin”;

| |

Pre-Condition Analysis

move pumpkin from player to desk;

pumpkin:T
pumpkin.lit:T
pumpkin:T
pumpkin.lit:false
+pumpkin.lit;
pumpkin:T i
Kin.lit:T : :
pumpxin- “You light the pumpkin”;
A/ i

Pre-Condition Analysis

pumpkin:player
pumpkin.lit:T

pumpkin:T
pumpkin.lit:T

Dataflow Analysis

= Pre/post-conditions constrain which actions can
follow which

Can we make this more precise?

Control flow often exists to give meaningful
responses, even 1f there are errors

(you,wear,ring) {
if (you contains mittens) {
“"you can't put on a ring while wearing mittens!”
} else {
move ring from desk to you;

}
}

No constraints 1n ‘“‘wear mittens; wear ring”

Accurate match analysis:

Detect necessary internal predicate for any state
change

Outermost conditional(s):
if (you contains mittens)

If one branch has no state changes

Pre-requisites for the action are preserved from the other
branch

Gives conditions required for meaningful action sequencing

Not all actions are required to win the game

Actions containing +game .win

Actions containing statements which enable reaching win

...and so on, recursively
“Enable” 1s based on state reachability

(you,do,something) {

if (x) |
if (y) { Action (you,do,something) is
part of the winning set.
}
}

Not all actions are required to win the game

Actions containing +game .win

Actions containing statements which enable reaching win

...and so on, recursively
“Enable” 1s based on state reachability

(you,do,something) {

if (x) |
if (v) { Winning enabled by actions which

+game .win; can make either X true ory true.

}

Not all actions are required to win the game

Actions containing +game .win

Actions containing statements which enable reaching win

...and so on, recursively

“Enable” 1s based on state reachability

(you,do,somethingElse) {

if (w) |
if (z) { X 1s enabled by action
: (you,do,somethingElse).
} Now we also need actions which can
} make either w true or z true...

Not all actions are required to win the game

Actions containing +game .win

Actions containing statements which enable reaching win

...and so on, recursively

Result 1s a closed subset of actions

All actions required to win the game
No “useless” actions

Reduces branching factor

Winning set establishes “useless™ actions
Actions that do not contribute to search goal
Useless objects exist too
Window dressing, promote interesting gameplay
But still have non-trivial state interactions

Conservatively kept in state space

Searching their states adds overhead

Useless objects

Useless state variable

Read/write only by useless actions

Read/write otherwise only to reassign itself

if (object.firstUse) {
-object.firstUse;
“Some text you only see once.”;

}
Useless location

Similar constraints

Narrative model
Verification
Datatlow analysis
Experiments

Future Work & Conclusions

Variety of test narratives

Two chapters from Return to Zork
Prior work using LL analysis unable to solve
Non-trivial student narratives

Three Little Pigs

Complexity requirement

Look for first winning path solution
various maximum search depths

See effect of optimizations

Experiments

= Small narrative (dpomer)

L T e o e e)
I— Best ’
. = No Cache :
. s Null Move Removal
s NoOpt .
4
—~ 3
©
c
@]
[&]
Q
o
4]
kS
=2
1
0

4 5 6 7 8 8
Search Depth

Experiments

= Larger narrative (mcheva)

240

. ! ! ! ! .
220
200
180 |
160 |
140 |
120 |
100 |
80 |
60 |-
26 27 28 29 30 3

1

Time (second)

I
32 33

33
Search Depth

= sdesja8 and RTZtask02

Time (second)

2500

2000

1500

1000

500

Experiments

18

19 20
Search Depth

21

22

22

Time (second)

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

‘ I
20 21

22 23 24 25

Search Depth

26

26

Dataflow Experiments

mcheva

Time (second)

200

150

100

50

26

27

28

29 30
Search Depth

31

____________) P B
. mmmm Previous Best '

© === Accurate Match
Em Useless Analysis

32 33

33

Time (second)

Dataflow Experiments

= sdesja8 and RTZtask02

100 T T T -

. I Previous Best

== Accurate Match

. mmmmm Useles Analysis

. mmmm Winning Set
80 - —
60 - —
40 -
20 - —

17 18 19 20 21 22 22
Search Depth

Time (second)

2500

2000

1500

1000

500

| I
20 21 22

23
Search Depth

24

: —I PreviousLBest
. == Accurate Match
. mmmmm Useles Analysis

25 26

26

Outline

Narrative model
Verification
Dataflow analysis
Experiments

Future Work & Conclusions

Previous work used low-level analysis

Hard to scale to larger narratives

Hours to days to analyze very small narratives

Even with state-of-the-art heuristic solvers

Our approach has orders of magnitude improvement

High-level info from datatlow analysis

Combined with efficient searching

Extend the experimentation

Model and analyze full commercial narratives

Techniques to ease analysis

Syntax to better identify semantic structure
Other datatlow analyses

context-sensitive
Metrics

Quality, complexity, understanding

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

