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Computer games have narratives

A story through events, choices
RPG, Adventure, FPS

Should be consistent
Appropriate responses 1n all eventualities
Greater scale => greater complexity

Large virtual world, multiple interacting events

Easy to make mistakes...



Game narratives often have tlaws

Non-sequiturs

Unwinnable situations
“pointlessness”

Unanticipated game states
Would be nice to analyze narratives

Detect flaws

Ensure good properties
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Need a well-defined target

Graphics, input mechanism, etc. secondary

Adventure (Interactive Fiction) games

“Pure” narrative — limited eye candy

Covers essential narrative features

Formal representation

Industry models ad hoc, incomplete

Existing IF languages messy



(P)NFG

Minimalist language for expressing an IF narrative
All essential narrative features

Simple but expressive grammar
Syntactic sugar added

Simple operational model

“Compiles” down to a well-defined Petri Net model

Flexible low-level verification/analysis



IF games:

Player directs a game avatar through a virtual world
World includes objects, locations (rooms)

Avatar responds to commands
Player input
Perform actions in the game world

Narrative progress through object, state interactions



Narrative components:

Objects

State variables
Booleans, counters
Location (rooms)

Tree-containment

Actions

Player-invoked (input event)

Test & modify state

state/location assignment, sequence, conditionals, output

no loops!



e.g., an object:

object pumpkin {
state { 1lit }
}

And an action:

(you,light,pumpkin) {
if ('pumpkin.lit) {
+pumpkin.lit;
“Is it Halloween already?”;
} else {
“It's already 1lit!”;



Narrative Model

= Operational behaviour
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Ensure good behaviour
E.g., “winnability”
Basic state search problem

Is there a winning path from the current state?

List all winning paths.
Backtracking search for winning states
Try all sequences of actions from initial state

Reaching a winning game state gives game solution



Brute force:

Action A Action B

for all possible actions



A large state-space to search:

Deep + large branching factor => not practical



Basic searching optimizations

Bounded depth
Cycle detection

Catches empty/null moves as well
Error state detection

Recognize rejected action sequences

Search cache

Can we do better with high level game information?
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Improve verification with HLL game information
Dataflow on game narrative
Heuristic observations

Actions are not entirely independent

“put on mittens” -> “put on ring”

“light candle” when the candle 1sn't around

Cause of excessive backtracking

And increased branching factor

A large number of action-pairs do not make sense



AQT analysis of actions for better search decisions

Two basic analyses of each game action

Post-conditions
Pre-conditions

Flow abstract game state through, see etfects

Help figure out which actions follow which

Reduce branching factor in search



What state does the action guarantee?

Similar to constant propagation:

Boolean object states
object.state {bottom, true, false, top}
Enumerated locations

object.location {bottom, locl1, loc2, ..., top}



!os!-!on!!!!on !nalys!s

pumpkin:T
pumpkin.lit:T




Post-Condition Analysis

pumpkin:T
pumpkin.lit:T

pumpkin:desk
pumpkin.lit:T




Post-Condition Analysis

pumpkin:desk
pumpkin.lit:false

pumpkin:desk
pumpkin.lit:true




Post-Condition Analysis

move pumpkin from player to desk;

v

if ('pumpkin.lit)

pumpkin:desk

pumpkin:desk
pumpkin.lit:false

pumpkin:desk
pumpkin.lit:true

pumpkin.lit:true

“You light the pumpkin”;

| |




Post-Condition Analysis

move pumpkin from player to desk;

v

if ('pumpkin.lit)

i

+pumpkin.lit;

pumpkin:desk
pumpkin.lit:true

pumpkin:desk
pumpkin.lit:true

pumpkin:desk
v pumpkin.lit:true




Post-Condition Analysis

pumpkin:desk Y
pumpkin.lit:true



Pre-condition analysis

Backward analogue of post-condition analysis

What conditions does an action require?

Require for correctness

Require in order to have a useful effect? (later)



re-Condition Analysis

pumpkin:T
pumpkin.lit:T




Pre-Condition Analysis

pumpkin:T
pumpkin.lit:T

pumpkin:T
pumpkin.lit:T



Pre-Condition Analysis

move pumpkin from player to desk;

v

if ('pumpkin.lit)

i

+pumpkin.lit;

pumpkin:T
pumpkin.lit:T

pumpkin:T
pumpkin.lit:T

pumpkin:T
pumpkin.lit:T




Pre-Condition Analysis

move pumpkin from player to desk;

v

if ('pumpkin.lit)

pumpkin:T
pumpkin.lit:false

pumpkin:T
pumpkin.lit:T

pumpkin:T
pumpkin.lit:T

“You light the pumpkin”;

| |




Pre-Condition Analysis

move pumpkin from player to desk;

pumpkin:T
pumpkin.lit:T
pumpkin:T
pumpkin.lit:false
+pumpkin.lit;
pumpkin:T i
Kin.lit:T : :
pumpxin- “You light the pumpkin”;
A/ i




Pre-Condition Analysis

pumpkin:player
pumpkin.lit:T

pumpkin:T
pumpkin.lit:T




Dataflow Analysis

= Pre/post-conditions constrain which actions can
follow which




Can we make this more precise?

Control flow often exists to give meaningful
responses, even 1f there are errors

(you,wear,ring) {
if (you contains mittens) {
“"you can't put on a ring while wearing mittens!”
} else {
move ring from desk to you;

}
}

No constraints 1n ‘“‘wear mittens; wear ring”



Accurate match analysis:

Detect necessary internal predicate for any state
change

Outermost conditional(s):
if (you contains mittens)

If one branch has no state changes

Pre-requisites for the action are preserved from the other
branch

Gives conditions required for meaningful action sequencing



Not all actions are required to win the game

Actions containing +game .win

Actions containing statements which enable reaching win

...and so on, recursively
“Enable” 1s based on state reachability

(you,do,something) {

if (x) |
if (y) { Action (you,do,something) is
part of the winning set.
}
}



Not all actions are required to win the game

Actions containing +game .win

Actions containing statements which enable reaching win

...and so on, recursively
“Enable” 1s based on state reachability

(you,do,something) {

if (x) |
if (v) { Winning enabled by actions which

+game .win; can make either X true ory true.

}



Not all actions are required to win the game

Actions containing +game .win

Actions containing statements which enable reaching win

...and so on, recursively

“Enable” 1s based on state reachability

(you,do,somethingElse) {

if (w) |
if (z) { X 1s enabled by action
: (you,do,somethingElse).
} Now we also need actions which can
} make either w true or z true...



Not all actions are required to win the game

Actions containing +game .win

Actions containing statements which enable reaching win

...and so on, recursively

Result 1s a closed subset of actions

All actions required to win the game
No “useless” actions

Reduces branching factor



Winning set establishes “useless™ actions
Actions that do not contribute to search goal
Useless objects exist too
Window dressing, promote interesting gameplay
But still have non-trivial state interactions

Conservatively kept in state space

Searching their states adds overhead



Useless objects

Useless state variable

Read/write only by useless actions

Read/write otherwise only to reassign itself

if (object.firstUse) {
-object.firstUse;
“Some text you only see once.”;

}
Useless location

Similar constraints
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Variety of test narratives

Two chapters from Return to Zork
Prior work using LL analysis unable to solve
Non-trivial student narratives

Three Little Pigs

Complexity requirement

Look for first winning path solution
various maximum search depths

See effect of optimizations



Experiments

= Small narrative (dpomer)
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Experiments

= Larger narrative (mcheva)
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= sdesja8 and RTZtask02
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Dataflow Experiments

mcheva
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Time (second)

Dataflow Experiments

= sdesja8 and RTZtask02
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Outline
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Previous work used low-level analysis

Hard to scale to larger narratives

Hours to days to analyze very small narratives

Even with state-of-the-art heuristic solvers

Our approach has orders of magnitude improvement

High-level info from datatlow analysis

Combined with efficient searching



Extend the experimentation

Model and analyze full commercial narratives

Techniques to ease analysis

Syntax to better identify semantic structure
Other datatlow analyses

context-sensitive
Metrics

Quality, complexity, understanding



Questions?
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