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Locality is Important
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L1
L2

L3

Mem

Threads

• Traditional reasons: memory wall, deeper memory 
hierarchy.

• New trends: more common and complex cache 
sharing.
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A Locality Model

• Reuse distance (LRU stack distance) 

• Def:  number of distinct elements between reuse
[Mattson et. al. 1970]

bcaacb
Rd = 2

• Connection with cache
• Rd > cache size            a likely cache miss
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Appeal of Reuse Distance
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Exact ✔ Average
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bcaacb
Rd = 2

More rigorous & machine independent
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Many Uses in Research
• Study cache reuses [Ding+:SC04,Huang+:ASPLOS05]

• Guide and evaluate program transformation [Almasi+:MSP02, 
Ding+:PLDI03]

• Predict locality phases [Shen+:ASPLOS04]

• Discover locality-improving refactoring [Beyls+:HPCC06]

• Model cache sharing [Chandra+:HPCA05, Jiang+:EuroPar08]

• Insert cache hints [Beyls+:JSA05]

• Manage superpages [Cascaval+:PACT05]

• Guide memory disambiguation [Fang+:PACT05]

• Predict program performance [Marin+:SIGMETRICS04,Zhong
+:TOC07]

• Model reference affinity [Zhong+:PLDI04]

• ...      ...
5
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Properties of Reuse Distance

Our objective:   Making reuse distance faster to obtain.
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Reuse 
distance

Cache 
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Outline

• Reuse distance measurement

• Efficient approximation of reuse distance (17X speedup)

• Algorithmic extensions (1 order of magnitude less)

• Implementation optimizations (3.3X speedup)

• Evaluation tool: trace generator

• Evaluation

• Conclusions
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Previous Research
T: execution time
N: data size

8

1970 (Mattson+)

2003 (Ding+)

O (T*N)

O (T*loglogN)

1975 (Bennett+)
1981 (Olken)
1991 (Kim+)
1993 (Sugumar+)
2002 (Almasi+)

But measuring 1-min execution still takes several hours!
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A Different Path

• Key obstacle: Counting out repetitive references in an 
arbitrarily long interval.

• Previous methods
implement the definition of reuse distance:
   “Counting” distinct data.

• Our approach
uses some “cheap” program behavior to statistically 
approximate reuse distance.
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The “Cheap” Behavior

• Time distance (TD)

• Def: number of elements between reuse.

• Reuse distance (RD)

• Def: number of distinct elements between reuse.
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bcaacb
Td = 5

bcaacb
Rd = 2

O(T)
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• Is it possible?
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No idea.

TD      RD :  Intuition

bxxxxb RD=1

TD histogram

RD=1, 2, 3, or 4 ?

b....b
TD=5

• What if  we know the following:
 totally 4 reuses; one TD is 5, three TDs are all 1.
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Problem to Solve
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“Locality approximation from time”,  Shen+: POPL’07. 

Probabilistic Model
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Connection between TD and RD 
[Shen+:POPL’07]

    Expectation of the probability for a variable to 
appear in a Δ-long interval:
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Connection between TD and RD 
[Shen+:POPL’07]

    Expectation of the probability for a variable to 
appear in a Δ-long interval:

    Probability for the interval to have k distinct 
variables (Bernoulli process): 

14

TD histogram
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• p(Δ):  a variable to appear in a Δ-long interval. 

• p’(τ): a variable’s last access before t is at time (t-τ).

Compute p(Δ)
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τ=1

Δ
 p(Δ) = ∑ p’(τ)

 p’(τ) = ∑ PT(δ)/(N-1)
δ=τ+1

T

• The following is proved in [Shen+:POPL07]
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Implementation Issues

• Scale:  The model applies to every access, but not to 
histograms.

• The width of a bar must be 1.

• Overhead: high cost in measuring time distance.

• Bookkeeping and buffer boundary checking at 
every memory access.
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Outline

• Reuse distance measurement

• Efficient approximation of reuse distance (17X speedup)

• Algorithmic extensions (1 order of magnitude less)

• Implementation optimizations (3.3X speedup)

• Evaluation tool: trace generator

• Evaluation

• Conclusions
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Algorithm Extension
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• Basic extension:  assume all references in a bar have 
the same      , denoted as      .

p(bi) =

←−
bi +

−→
bi

2∑

τ=1

T∑

δ=τ+1

1
N − 1

PT (δ).

1

p(bi) =

←−
bi +

−→
bi

2∑

τ=1

T∑

δ=τ+1

1
N − 1

PT (δ).

p(k, bi) =
(

N

k

)

p(bi)k(1 − p(bi))N−k.

1

• Time complexity:  
               : number of bars in a TD histogram.

p(bi) =

←−
bi +

−→
bi

2∑

τ=1

T∑

δ=τ+1

1
N − 1

PT (δ).

p(k, bi) =
(

N

k

)

p(bi)k(1 − p(bi))N−k.

Complexity is

O(L3
T )

1

p(bi) =

←−
bi +

−→
bi

2∑

τ=1

T∑

δ=τ+1

1
N − 1

PT (δ).

p(k, bi) =
(

N

k

)

p(bi)k(1 − p(bi))N−k.

Complexity is

O(L3
T )

LT

1



Xipeng Shen  @  College of William & Mary

Algorithmic Optimizations

• Decompose       into 3 sub-equations to remove 
redundant computations.
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Algorithmic Optimizations

• Further optimizations

• mathematical approximation

• statistical approximation
• Normal distribution with table-lookup for binomial 

distribution calculation

• Time complexity
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Details in [Shen+:LCPC’08].
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Procedure RecordMemAcc (addr)
    buffer [index++] = addr;

    if (index== BUFFERSIZE) then
        ProcessBuff();
    endif

end

Measure TD

• Invocation to record function after every load/store.

21

Basic record function

Procedure RecordMemAcc (addr)
    buffer [index++] = addr;
end

After optimization

• Fewer operations
• Fewer branch miss predictions
• Amenable to runtime inlining
• 3.3X speedup
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MMU Control

• Typical scheme:

• Control page permission & modify registers

• Not portable across architectures.

• Our approach:

• 2-page scheme

• Close & open permissions of the final 2 pages 
alternatively

22

Details in [Shen+:LCPC’08].
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2-Page Scheme for Using MMU 
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...

Buffer

Page 1
Page 2
Page 3

Page N-1
Final page

Process buffer

Signal

An option to resume: 
change target location by modifying 
register values. Not portable.
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2-Page Scheme for Using MMU 
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...

Buffer

Page 1
Page 2
Page 3

Page N-1
Final page

Process buffer
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2-Page Scheme for Using MMU 

25

...

Buffer

Page 1
Page 2
Page 3

Page N-1
Final page

Using the last 2 pages alternatively to 
signal the end of buffer
• Remove boundary check
• More portable

Limitations
• 2 page space waste
• 1 data loss per buffer 
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Outline

• Reuse distance measurement

• Efficient approximation of reuse distance

• Algorithmic extensions

• Implementation optimizations

• Evaluation tool: trace generator

• Evaluation

• Conclusions
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A Reverse Problem:  Trace Generation

• Reuse distance measurement or approximation
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• Trace generator

Trace            Reuse distance

Trace            Reuse distance

Use:  for evaluating locality techniques on various 
reuse patterns.
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A Reverse Problem:  Trace Generation

• Technique:  a stochastic process

• Property:    The generated trace meets input 
requirements (proof in [Shen+:LCPC’08])

28

RD histogram
trace length       T
data size            N

reference tracetrace 
generator
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Outline

• Reuse distance measurement

• Efficient approximation of reuse distance

• Algorithmic extensions

• Implementation optimizations

• Evaluation tool: trace generator

• Evaluation

• Conclusions
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Evaluation (Pulse-like reuse distributions)

Time Distance Histogram
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Reuse Distance Histogram
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RD Approximation on Synthetic Traces
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acc%

Normal (var=20)

Normal (var=100)

Normal (var=200)

Exponential

Average

92.8

96.3

95.8

96.9

95.5
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Evaluation on Real Benchmarks
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CPU Intel Xeon 2GHz

Instrumentor

Compiler

HW perf. measure

Benchmarks

PIN 3.4

GCC 3.4.4 (“-O3”)

PAPI 3.2

SPEC CPU2000 ref

Baseline:      Ding+:PLDI’03.
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Results on Real Benchmarks
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Programs Element Cache line

gcc

gzip

mcf

twolf

ammp

applu

equake

mesa

mgrid

Average

acc% speedup acc% speedup

89.0 21.2X 99.4 16.7X

99.0 19.0X 99.5 17.0X

42.6 8.3X 94.0 18.2X

88.2 5.9X 98.1 20.2X

95.8 14.3X 99.2 21.5X

86.1 19.0X 99.2 21.4X

57.6 23.7X 98.5 15.1X

97.3 26.3X 100 14.0X

89.7 20.6X 99.6 21.5X

82.8 17.6X 98.6 18.4X
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Uses in Cache Miss Rate Estimation
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(a) mcf element reuse histogram (b) mcf cache line reuse histogram

Figure 4. The real and estimated reuse distance histograms of mcf, the benchmark with the largest approximation error. The X-axes are on
log scale.
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(a) mcf cache miss rate curves (b) ammp cache miss rate curves

Figure 5. The cache miss rates obtained from the real and estimated reuse distance histograms given different cache size of fully associativity.

distance. In 2002, Zhong et al. proposed an approximation algo-
rithm using block tree [27]. Ding and Zhong further extended the
algorithm through dynamic tree compression in 2003 [9]. The ap-
proximation algorithms trade accuracy for efficiency by increasing
the measurement granularity. A tree node contains a group of data
accessed closely and assigns a single time stamp to all of them. The
time complexity becomes O(T loglogN) and the space overhead
is O(logN).
This work tackles the problem by exploring the relations be-

tween time distance and reuse distance, which provides 17 times
speedup than Ding and Zhong’s technique. The complexity for
measuring time distance is O(T ).
The key component of the technique is a statistical model. In

1976, Smith gave us an excellent example of applying statistical
models to memory behavior characterization. He described a model
that successfully approximated miss rates of set associative caches
given the miss ratio for fully associative caches [24].
Compiler analysis has been successful in understanding and

improving locality in basic blocks and loop nests. McKinley and
Temam carefully studied various types of locality within and be-

tween loop nests [19]. Cascaval presented a compiler algorithm that
measures reuse distance directly [6]. Allen and Kennedy discussed
the subject comprehensively in their book [1]. Thabit identified data
often used together based on their access frequency [26]. Chilimbi
used grammar compression to find hot data streams and reorga-
nized data accordingly [7].

8. Conclusions

In this work, we demonstrates the strong connections between time
and locality. We propose a novel statistical model to approximate
program locality from easily-obtained time distance histograms.
Experiments show 17 times speedup over the state-of-the-art lo-
cality measurement. The approximation accuracy is over 99% for
cache block reuse and over 94% for element reuse. The model is
general enough to allow reuse distance histograms of any scale and
data reuse of different granularity to be approximated. The tech-
nique eliminates the obstacles blocking efficient uses of reuse dis-
tance and opens up opportunities for various efficient performance
debugging, performance prediction and program optimizations.

benchmark
mcf

For all benchmarks, error < 1.76%, 
average error = 0.42%.

(Details in Shen+:TR902)
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Conclusions

• Strong connection exists between time and locality.

• Reuse distance can be approximated from time 
efficiently.
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* Details in:
      “Locality approximation from time”, POPL’07. 
      “Adaptive software speculation for enhancing the efficiency  
       of behavior-oriented parallelization”, LCPC’08.
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