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Problem

• There is a potential to improve any program 
(in terms of either robustness or speed)

but
• Programs can be extremely complex, and
• Code is often inherited by new programmers

thus

• There is uncertainty in making any change
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Our Proposal: 

Use Software Speculation

• Keep the existing program implementation

• Augment it with an alternative version
• Run the new code speculatively 
• Use the original guaranteeing a baseline

• Since progress is made by whichever execution is 
faster, we guarantee that the system can only be 
marginally worse than the original implementation.

• Can be applied to guarantee unsafe optimizations, 
or to reduce the cost of correctness checking.
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Visually...
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But what if ...
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Fast Track

• Coarse-grained speculative execution using linux 
processes

• Applies to sequential C/C++ programs

• Requires a runtime library and compiler support

• Automatically selects the faster of two equivalent 
processes. Our assertion is that two processes are 
equivalent if:
– they begin in the same state
– result in the same memory state
– are followed by the same instruction sequence

7



CDP 2008K. Kelsey

Compiler Support
general

• Based on a modified GCC 4.1

• Moves global variables into heap allocated space
– inserts new allocation calls
– adds initialization routines
– changes accesses so they reference the heap

• Redirects heap [de]allocation so we can track data
• Replaces output functions with buffered versions
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Runtime Support

• Forks new processes to execute two versions of code
– per-process memory space means rollback is simple
– operating system copy-on-write limits the memory overhead

• Tracks which memory pages each process modifies
– page fault handers trigger once per page

• Compares memory state after each pair of parallel 
tracks to ensure correct computation
– Can ignore data objects known to be “inconsequential”

(based on programmer annotation)
– Correctness checking can customized using a programmer 

supplied function pointer
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Testbed System
& Introduction to Mudflap

• We leverage an existing memory checking system as 
a demonstration testbed for our speculation system
– GCC included a memory checking (“pointer debugging”) 

system called mudflap
– Mudflap comprises compiler support and runtime libraries

• Use the existing implementation as the fast track
• The overhead of extra checking creates a slow track

• Add more compiler support to automate the process
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Mudflap 
Compiler Support

• Adds code to register some variables at runtime
– when the address is taken
– when the bounds are not known statically (e.g. extern)

• Inserts runtime checks before pointer dereferences
• Support is activated by a compile time flag (-fmudflap)
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Mudflap 
Runtime Library

• Tracks ranges of valid memory objects 
– heap allocation
– objects registered by the static analysis

• Checks for reads of uninitialized objects
• Reports memory leaks

• Wraps some common string and heap accesses 
(think: strcmp, memcpy)

• Allows for several forms of error reporting
– spawn gdb
– output log
– abort
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Visually...
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More

Compiler Support

• Custom GCC (v4.1) optimization pass

• Generates a copy of each program function (a clone)
• Changes call sites in function copies to call the clone 

of the original target
• Instructs mudflap to skip instrumentation on each 

clone
• Programmer must indicate what to fast track

– by default mudflap is used
– mudflap variable registration cannot be avoided
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Visually...
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The programmer needs 
to do very little:

if( BeginFastTrack())
{
    _clone__foo( );
} else {
    foo( );
}
PostFastTrack();

And even that can be 
reduced with Macros:

FASTTRACK(foo());

return value based on calls to fork

mudflap free version of foo() is 
automatically generated

original function foo()

setup asynchronous memory checking 
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Finally, in code
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Results: hmmer execution times
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Results: Speedup Over Mudflap
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Conclusion

• Software speculation can reduce the overhead of 
correctness checking

• The same technique can ensure the correctness of 
unsafe optimizations, or be used to select amongst 
different heuristic approaches.

• The Fast Track system is a working example of such a 
technique
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