
Improving Error Checking and Unsafe
Optimizations using Software Speculation

Kirk Kelsey and Chen Ding

University of Rochester

CDP 2008K. Kelsey

Outline

• Motivation
– Brief problem statement
– How speculation can help

• Our software speculation system
– Compiler Support, Runtime Libraries, Visual Examples

• An Example Testbed System
– Compiler Support, Runtime Libraries, Visual Examples

• Empirical Results
– Reducing the cost of correctness checking

• Conclusion

2

CDP 2008K. Kelsey

Problem

• There is a potential to improve any program
(in terms of either robustness or speed)

but
• Programs can be extremely complex, and
• Code is often inherited by new programmers

thus

• There is uncertainty in making any change

3

CDP 2008K. Kelsey

Our Proposal:

Use Software Speculation

• Keep the existing program implementation

• Augment it with an alternative version
• Run the new code speculatively
• Use the original guaranteeing a baseline

• Since progress is made by whichever execution is
faster, we guarantee that the system can only be
marginally worse than the original implementation.

• Can be applied to guarantee unsafe optimizations,
or to reduce the cost of correctness checking.

4

CDP 2008K. Kelsey

Visually...

5

init()

foo()

bar()

bar()

fast_foo()

CDP 2008K. Kelsey

But what if ...

6

init()

foo()

bar()

bar()

not_always
_fast_foo()

foo() not_foo()

bar()

CDP 2008K. Kelsey

Fast Track

• Coarse-grained speculative execution using linux
processes

• Applies to sequential C/C++ programs

• Requires a runtime library and compiler support

• Automatically selects the faster of two equivalent
processes. Our assertion is that two processes are
equivalent if:
– they begin in the same state
– result in the same memory state
– are followed by the same instruction sequence

7

CDP 2008K. Kelsey

Compiler Support
general

• Based on a modified GCC 4.1

• Moves global variables into heap allocated space
– inserts new allocation calls
– adds initialization routines
– changes accesses so they reference the heap

• Redirects heap [de]allocation so we can track data
• Replaces output functions with buffered versions

8

CDP 2008K. Kelsey

Runtime Support

• Forks new processes to execute two versions of code
– per-process memory space means rollback is simple
– operating system copy-on-write limits the memory overhead

• Tracks which memory pages each process modifies
– page fault handers trigger once per page

• Compares memory state after each pair of parallel
tracks to ensure correct computation
– Can ignore data objects known to be “inconsequential”

(based on programmer annotation)
– Correctness checking can customized using a programmer

supplied function pointer

9

CDP 2008K. Kelsey

Testbed System
& Introduction to Mudflap

• We leverage an existing memory checking system as
a demonstration testbed for our speculation system
– GCC included a memory checking (“pointer debugging”)

system called mudflap
– Mudflap comprises compiler support and runtime libraries

• Use the existing implementation as the fast track
• The overhead of extra checking creates a slow track

• Add more compiler support to automate the process

10

CDP 2008K. Kelsey

Mudflap
Compiler Support

• Adds code to register some variables at runtime
– when the address is taken
– when the bounds are not known statically (e.g. extern)

• Inserts runtime checks before pointer dereferences
• Support is activated by a compile time flag (-fmudflap)

11

CDP 2008K. Kelsey

Mudflap
Runtime Library

• Tracks ranges of valid memory objects
– heap allocation
– objects registered by the static analysis

• Checks for reads of uninitialized objects
• Reports memory leaks

• Wraps some common string and heap accesses
(think: strcmp, memcpy)

• Allows for several forms of error reporting
– spawn gdb
– output log
– abort

12

CDP 2008K. Kelsey

Visually...

13

init()

foo_plus_
mudflap()

bar()

bar()

foo()

CDP 2008K. Kelsey

More

Compiler Support

• Custom GCC (v4.1) optimization pass

• Generates a copy of each program function (a clone)
• Changes call sites in function copies to call the clone

of the original target
• Instructs mudflap to skip instrumentation on each

clone
• Programmer must indicate what to fast track

– by default mudflap is used
– mudflap variable registration cannot be avoided

14

CDP 2008K. Kelsey

Visually...

15

bar()

_clone_foo()
foo()

init()

bar()

{}

The programmer needs
to do very little:

if(BeginFastTrack())
{
 _clone__foo();
} else {
 foo();
}
PostFastTrack();

And even that can be
reduced with Macros:

FASTTRACK(foo());

return value based on calls to fork

mudflap free version of foo() is
automatically generated

original function foo()

setup asynchronous memory checking

CDP 2008K. Kelsey

Finally, in code

16

CDP 2008K. Kelsey

Results: hmmer execution times

17

0s

75s

150s

225s

300s

Mudflap FT 2 FT 3 FT 4 FT 5 FT 6 FT 7 FT 8 Base

15.6s
33.2s34.9s37.8s41.0s47.1s

58.1s

84.5s

234.5s

CDP 2008K. Kelsey

Results: Speedup Over Mudflap

18

1

2

3

4

5

FT 2 FT 3 FT 4 FT 5 FT 6 FT 7 FT 8

SJENG MCF BZIP2

S
pe

ed
up

CDP 2008K. Kelsey

Conclusion

• Software speculation can reduce the overhead of
correctness checking

• The same technique can ensure the correctness of
unsafe optimizations, or be used to select amongst
different heuristic approaches.

• The Fast Track system is a working example of such a
technique

19

Thank You

Kirk Kelsey & Chen Ding

University of Rochester

