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Lock Allocation

Critical section: piece of code that accesses shared state exclusively

Lock: object that guards access to a critical section

Lock allocation: mapping locks to critical sections

Sounds straightforward, but manual approaches are tricky!



Race Conditions



Deadlock



Performance Degradation



Goal

Our approach: automatic lock allocation

Goal: simplify concurrent programming

Remove burden of manual allocation from programmer

Aim to be strictly simpler: no extra language constructs

Ideal result: automatic allocation performance matches or exceeds
manual allocation performance



Contributions

Our contributions:

We investigate component-based lock allocation:

Coarse locking granularity
Construct a critical section interference graph
One lock per graph component

Experiment with many static compiler analyses

Show results for small and large Java benchmarks

The technique often performs well:

Matches manual allocation performance on 2, 4, 8-way hardware
for mtrt (SPEC JVM98), lusearch and xalan (DaCapo), and SPEC
JBB2005.
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Analysis Pipeline



Initial Approximation



Thread-Based Side Effect Analysis



May Happen in Parallel Analysis



Component-Based Lock Allocation



Finding Thread-Based Side Effects

Build on an existing side-effect analysis

Identify fields that are read & written

Each field has a points-to set of possible base objects

Extend it to be thread-sensitive

Approximate the thread-visible effects of library calls

Exclude thread-local side effects

Use it to construct a critical section interference graph



Constructing an Interference Graph

class A { class B {

public static int f; public static int f;

synchronized void a() { synchronized void b() {

A.f = B.f + 1; B.f = B.f + D.f;

} }

} }

class C { class D {

public static int f; public static int f;

synchronized void c() { synchronized void d() {

C.f = C.f + 1; D.f = D.f + 1;

} }

} }



Constructing an Interference Graph

A B C D

A 1 1 0 0
B 1 1 0 1
C 0 0 1 0
D 0 1 0 1



Finding Thread-Local Objects

Thread-local object: object only read & written by a single thread
Similar to escape analysis

Partition the heap into thread-shared and thread-local data

Use information flow analysis to propagate thread-shared status

Values identified as thread-local do not require synchronized access



May Happen in Parallel Analysis

MHP analysis finds methods that execute concurrently

Several distinct steps:
1 Identify run-once and run-many statements
2 Identify run-once and run-many threads
3 Categorize run-many threads as run-one-at-a-time or

run-many-at-time
4 Find methods that may happen in parallel based on thread

reachability

Critical sections that may not happen in parallel cannot interfere!



Run-Once Run-Many Analysis



Run-Once Run-Many Analysis
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Run-Once Run-Many Analysis



Run-Once Run-Many Analysis



Thread Categorization
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Thread Categorization



Thread Categorization



Finding run-one-at-a-time threads



Finding run-one-at-a-time threads

For each start, consider all joins:
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Finding run-one-at-a-time threads

For each start, consider all joins:

Any valid join receiver must alias start receiver
Any valid join must post-dominate start
And not have loops to start between the start and join...

If join is valid, check method validity:

Method must not be called recursively
Method must not happen in parallel with itself



Finding MHP Information

A B C D

A 0 0 1 1
B 0 0 1 1
C 1 1 0 1
D 1 1 1 1



Applying MHP Information

A B C D

A 1 1 0 0
B 1 1 0 1
C 0 0 1 0
D 0 1 0 1
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Applying MHP Information

A B C D

A 1 1 0 0
B 1 1 0 1
C 0 0 1 0
D 0 1 0 1

•

A B C D

A 0 0 1 1
B 0 0 1 1
C 1 1 0 1
D 1 1 1 1

=

A B C D

A 0 0 0 0
B 0 0 0 1
C 0 0 0 0
D 0 1 0 1

A simple Hadamard product



Component-Based Lock Allocation

Three kinds of component-based lock allocation:

1 Singleton: a single static lock protects all components

2 Static: one static lock per component

3 Dynamic: attempt to use per-data structure locks for each
component, otherwise static

Finally, isolated vertices with no self loops are unlocked
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Experimental Setup

For each benchmark, we do 13 experiments:

control: original benchmark program

singleton: single static lock for all critical sections

5 static locking allocations:
1 CHA: class hierarchy analysis points-to and side effects
2 Spark: context-insensitive points-to and side effects
3 Spark-MHP: Spark with may happen in parallel [MHP] analysis
4 Spark-TLO-MHP: Spark with both TLO and MHP

5 analogous dynamic locking allocations

11 benchmarks: 5 micro, 6 standard
64-bit AMD Machines (dual, 4-way, 4-way dual), Sun JDK1.5
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Relative Speedup of Using CHA
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Relative Speedup of Using Spark
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Relative Speedup of Adding MHP Analysis
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Relative Speedup of Adding TLO Analysis
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Relative Speedup of Using Dynamic Locking
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Relative Speedup of Using Dynamic Locking
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Conclusions

Singleton allocation is not generally viable

Points-to analysis precision is important

MHP analysis helps if it can split a larger component

TLO analysis usually has a negligible effect

Dynamic locking has a small impact; may degrade or improve
performance

Component-based allocation works surprisingly well for many
benchmarks



Future Work

More precise compiler analyses

Finer locking granularities

Method synchronization

Critical section inference

Speculative locking and transactional memory



Questions?

Thank you for your attention.



Related Work

May Happen in Parallel analysis for Java (Naumovich et al. ’99, Li ’04).

Thread-sensitive points-to and escape analysis (Chang and Choi ’04, Sălcianu and
Rinard ’01).

Thread-local objects analysis for synchronization elimination (Ruf ’00).

Pessimistic atomic sections/transactions (McCloskey et al. ’06, Hicks et al. ’06).

Lock allocation

Concurrency graph (Sreedhar, Zhang, et al. ’05).

ILP-based optimal allocations (Sreedhar, Zhang, et al. ’05, Emmi et al. ’07).

Static race detection (Naik et al.’06, and many others).

Optimistic concurrency, transactional memory (see Larus & Rajwar ’06).


