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Lock Allocation

@ Critical section: piece of code that accesses shared state exclusively

@ Lock: object that guards access to a critical section

@ Lock allocation: mapping locks to critical sections

Sounds straightforward, but manual approaches are tricky!



Race Conditions

class T1 extends Thread class T2 extends Thread
{ {
public static Object a; public static Object b;
run () run ()
{ {
synchronized (T1.a) synchronized (T2.b)
{ o race condition! { o
Main.i++; < ' Main.i++;
} }
} }

} }



Deadlock

class T1 extends Thread class T2 extends Thread
{ {
public static Object a; public static Object b;
run () run ()
{ {
synchronized (T1.a) synchronized (T2.b)
{ | {
synchronized (T2.b) «—92dI0cKt "o nchronized (T1.a)
{ {
Main.i++; Main.i++;
} }
} }
} }

} }



Performance Degradation

class T1 extends Thread class T2 extends Thread
{ {
public static Object a; public static Object b;
run () run ()
{ {
synchronized (T1.a) synchronized (T1.a)
{ {
synchronized (T2.b) synchronized (T2.b)
{ {
Work(): <—Performance o work():
} degradation! }
} }
} }

} }



Our approach: automatic lock allocation

Goal: simplify concurrent programming
@ Remove burden of manual allocation from programmer
@ Aim to be strictly simpler: no extra language constructs

@ ldeal result: automatic allocation performance matches or exceeds
manual allocation performance



Contributions

Our contributions:
@ We investigate component-based lock allocation:

@ Coarse locking granularity
@ Construct a critical section interference graph

@ One lock per graph component
@ Experiment with many static compiler analyses

@ Show results for small and large Java benchmarks

The technique often performs well:

@ Matches manual allocation performance on 2, 4, 8-way hardware
for mtrt (SPEC JVM98), lusearch and xalan (DaCapo), and SPEC

JBB2005.



© Design



Analysis Pipeline

Initial Approximation

CS1:;---:CS3
class G { CSZ
public static int X, Y; o
} Interference Identification
l Thread-Local Objects Analysis
class T1 extends Runnable { Thread-Based Side Effect Analysis
run() {
synchronized(...) { // CS1 CSb—CSB
G.Y = G.X; o
; . CS2
synchronized(...) { // CS2
GX=GX+1; _
} Interference Pruning
} May Happen in Parallel Analysis
}
CS1—CsS3
class T2 extends Runnable {
run() {
synchronized(...) { // CS3 CS2
inta = G.Y; _
} Component-Based Lock Allocation
} Static Locking
} Dynamic Locking

CCSl—CS3>

CS2




Initial Approximation

Initial Approximation

CS1::---- =CS3
class G { ey
public static int X, Y; o
} Interference Identification
l Thread-Local Objects Analysis
class T1 extends Runnable { Thread-Based Side Effect Analysis
run() {
synchronized(...singletonObject...) { // CS1 CSlJ CS3
G.Y = G.X; o
} _ | | CS2
synchronized(...singletonObject...) { // CS2
GX=GX+1; _
} Interference Pruning
} May Happen in Parallel Analysis
}
CS1—CsS3
class T2 extends Runnable {
run() {
synchronized(...singletonObject...) { // CS3 €S2
inta = G.Y; :
} Component-Based Lock Allocation
} Static Locking
} Dynamic Locking

CCSl—CS3>

CS2




class G {
public static int X, Y;
}

class T1 extends Runnable {
run() {
synchronized(...) { // CS1
G.Y = G.X;«—_Read from X, thread-shared
} Write to Y, thread-shared
synchronized(...) { // CS2
G.X = G.X + 1yRead from X, thread-shared
} Write to X, thread-shared

}
}

class T2 extends Runnable {
run() {
synchronized(...) { // CS3
int a = G.Y;«—Read from Y, thread-shared
}
}
}

___________________

CS1——CS3

o
CS2

CS1——CS3

CS2

CCSl—CS3>

CS2

Thread-Based Side Effect Analysis

Initial Approximation

Interference Identification
Thread-Local Objects Analysis
Thread-Based Side Effect Analysis

Interference Pruning
May Happen in Parallel Analysis

Component-Based Lock Allocation
Static Locking
Dynamic Locking



May Happen in Parallel Analysis

Find and apply MHP information

class G {
public static int X, Y;
}

class T1 extends Runnable {
run() {
synchronized(...) { // CS1
G.Y = G.X;
}
synchronized(...) { // CS2
GX=GX+1;
}
}
}

class T2 extends Runnable {
run() {
synchronized(...) { // CS3
inta = G.Y;
}
}
}

___________________

CS1——CS3

)
CS2

CS1——CS3

CS2

CCSl—CS3>

CS2

Initial Approximation

Interference Identification
Thread-Local Objects Analysis
Thread-Based Side Effect Analysis

Interference Pruning
May Happen in Parallel Analysis

Component-Based Lock Allocation
Static Locking
Dynamic Locking



Component-Based Lock Allocation

Static Lock Allocation:
(Dynamic is the same in this case)

class G {
public static int X, Y;
}

class T1 extends Runnable {
run() {
synchronized(LockObjectl) { // CS1
GY = G.X;
}
GX=GX+1;
_}.
}
}

class T2 extends Runnable {
run() {
synchronized(LockObjectl) { // CS3
inta = G.Y;
}

}
public static Object LockObjectl =

new Object();

___________________

CS1——CS3

)
CS2

CS1——CS3

CS2

CCSl—CSED

CS2

Initial Approximation

Interference Identification
Thread-Local Objects Analysis
Thread-Based Side Effect Analysis

Interference Pruning
May Happen in Parallel Analysis

Component-Based Lock Allocation
Static Locking
Dynamic Locking



Finding Thread-Based Side Effects

Build on an existing side-effect analysis
@ ldentify fields that are read & written
@ Each field has a points-to set of possible base objects
Extend it to be thread-sensitive
@ Approximate the thread-visible effects of library calls
@ Exclude thread-local side effects

Use it to construct a critical section interference graph



Constructing an Interference Graph

class A {
public static int f;

synchronized void a() {
A.f =B.f + 1;
by
¥

class C {
public static int f;

synchronized void c() {
C.f=20C.f+1;
+
}

class B {
public static int f;

synchronized void b() {
B.f = B.f + D.f;
by
¥

class D {
public static int f£;

synchronized void d() {
D.f =D.f + 1;
}
¥



Constructing an Interference Graph
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Finding Thread-Local Objects

Thread-local object: object only read & written by a single thread
Similar to escape analysis

@ Partition the heap into thread-shared and thread-local data
@ Use information flow analysis to propagate thread-shared status

Values identified as thread-local do not require synchronized access



May Happen in Parallel Analysis

@ MHP analysis finds methods that execute concurrently

@ Several distinct steps:

@ Identify run-once and run-many statements

@ Identify run-once and run-many threads

© Categorize run-many threads as run-one-at-a-time or
run-many-at-time

@ Find methods that may happen in parallel based on thread
reachability

@ Critical sections that may not happen in parallel cannot interfere!



Run-Once Run-Many Analysis

foo() main()

[] run-once [[] run-many



Run-Once Run-Many Analysis

.t

foo() main()

[] run-once [[] run-many



Run-Once Run-Many Analysis

.t

foo() main()

[] run-once [[] run-many



Run-Once Run-Many Analysis

G

foo() main()

[] run-once [[] run-many



Run-Once Run-Many Analysis

.t

foo() main()

[] run-once [[] run-many



Run-Once Run-Many Analysis

.t

foo() main()

[] run-once [[] run-many



Thread Categorization

Thread t1, t2, t3

int i tl = new T1()
& run-once t1.start()
] run-many ¢
t2 = new T2()
T1:? ¢
i=0
T2:7? ¢
T3:7 if (i >0) |«
F T\
t3 = new T3()
t2.start() ¢
\ t3.start()
=i+ 1
if (i< 10) -




Thread Categorization

Thread t1, t2, t3
inti
[] run-once

] run-many

T1:7?
T2:7?
T3:7




Thread Categorization

Thread t1, t2, t3
inti
[] run-once

] run-many

T1: run-once
T2:7?
T3:7




Thread Categorization

Thread t1, t2, t3
inti
[] run-once

] run-many

T1: run-once
T2: run-once

T3:7




Thread Categorization

Thread t1, t2, t3
inti
[] run-once

] run-many

T1: run-once
T2: run-once

T3: run-many




Finding run-one-at-a-time threads

Thread t1, t2, t3
int i

[] run-once

] run-many

T1: run-once

T2: run-once

T3: Fea—aohy-
one-at-a-time




Finding run-one-at-a-time threads

t3.start(]
4 : [
tA.join() B
tC.join()
y
tB.join()

@ For each start, consider all joins:



Finding run-one-at-a-time threads

t3.start(
4 {
t3.join()
y
t3.join()

@ For each start, consider all joins:
@ Any valid join receiver must alias start receiver



Finding run-one-at-a-time threads

t3.start(

t3.join()

@ For each start, consider all joins:

@ Any valid join receiver must alias start receiver
@ Any valid join must post-dominate start



Finding run-one-at-a-time threads

Y
t3.start(

t3.join()

@ For each start, consider all joins:

@ Any valid join receiver must alias start receiver
@ Any valid join must post-dominate start
@ And not have loops to start between the start and join...



Finding run-one-at-a-time threads

t3.join()

@ For each start, consider all joins:

@ Any valid join receiver must alias start receiver
@ Any valid join must post-dominate start
@ And not have loops to start between the start and join...

@ If join is valid, check method validity:

@ Method must not be called recursively
@ Method must not happen in parallel with itself



Finding MHP Information

run-once
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Applying MHP Information
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A simple Hadamard product



Applying MHP Information
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Component-Based Lock Allocation

Three kinds of component-based lock allocation:
O Singleton: a single static lock protects all components
Q Static: one static lock per component

© Dynamic: attempt to use per-data structure locks for each
component, otherwise static

Finally, isolated vertices with no self loops are unlocked



© Experimental Results



Experimental Setup

For each benchmark, we do 13 experiments:
@ control: original benchmark program

@ singleton: single static lock for all critical sections

@ 5 static locking allocations:

@ CHA: class hierarchy analysis points-to and side effects

@ Spark: context-insensitive points-to and side effects

© Spark-MHP: Spark with may happen in parallel [MHP] analysis
@ Spark-TLO-MHP: Spark with both TLO and MHP

@ 5 analogous dynamic locking allocations

11 benchmarks: 5 micro, 6 standard
64-bit AMD Machines (dual, 4-way, 4-way dual), Sun JDK1.5



Singleton Lock Slowdown

6 Performance Relative to Manual Allocation
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Relative Speedup of Using CHA

6 Performance Relative to Manual Allocation
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Relative Speedup of Using Spark

6 Performance Relative to Manual Allocation
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Relative Speedup of Adding MHP Analysis

6 Performance Relative to Manual Allocation
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Relative Speedup of Adding TLO Analysis

slowdown

Performance Relative to Manual Allocation
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Relative Speedup of Using Dynamic Locking

slowdown

Performance Relative to Manual Allocation
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Relative Speedup of Using Dynamic Locking

slowdown

Performance Relative to Manual Allocation
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© Conclusions and Future Work



Conclusions

Singleton allocation is not generally viable
Points-to analysis precision is important
MHP analysis helps if it can split a larger component

TLO analysis usually has a negligible effect

e 6 6 ¢ ¢

Dynamic locking has a small impact; may degrade or improve
performance

@ Component-based allocation works surprisingly well for many
benchmarks



More precise compiler analyses
Finer locking granularities
Method synchronization

Critical section inference

e 6 6 ¢ ¢

Speculative locking and transactional memory



Thank you for your attention.



Related Work
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May Happen in Parallel analysis for Java (Naumovich et al. '99, Li '04).

Thread-sensitive points-to and escape analysis (Chang and Choi '04, Salcianu and
Rinard '01).

Thread-local objects analysis for synchronization elimination (Ruf '00).

Pessimistic atomic sections/transactions (McCloskey et al. '06, Hicks et al. '06).

Lock allocation

@ Concurrency graph (Sreedhar, Zhang, et al. '05).
@ ILP-based optimal allocations (Sreedhar, Zhang, et al. '05, Emmi et al. '07).
Static race detection (Naik et al."06, and many others).

Optimistic concurrency, transactional memory (see Larus & Rajwar '06).



