Component-Based Lock Allocation

Richard Halpert Chris Pickett Clark Verbrugge

School of Computer Science, McGill University
{rhalpe,cpicke,clump}@sable.mcgill.ca

6th Workshop on Compiler-Driven Performance

CASCON
October 22nd, 2007

Lock Allocation

@ Critical section: piece of code that accesses shared state exclusively

@ Lock: object that guards access to a critical section

@ Lock allocation: mapping locks to critical sections

Sounds straightforward, but manual approaches are tricky!

Race Conditions

class T1 extends Thread class T2 extends Thread
{ {
public static Object a; public static Object b;
run () run ()
{ {
synchronized (T1.a) synchronized (T2.b)
{ o race condition! { o
Main.i++; < ' Main.i++;
} }
} }

} }

Deadlock

class T1 extends Thread class T2 extends Thread
{ {
public static Object a; public static Object b;
run () run ()
{ {
synchronized (T1.a) synchronized (T2.b)
{ | {
synchronized (T2.b) «—92dI0cKt "o nchronized (T1.a)
{ {
Main.i++; Main.i++;
} }
} }
} }

} }

Performance Degradation

class T1 extends Thread class T2 extends Thread
{ {
public static Object a; public static Object b;
run () run ()
{ {
synchronized (T1.a) synchronized (T1.a)
{ {
synchronized (T2.b) synchronized (T2.b)
{ {
Work(): <—Performance o work():
} degradation! }
} }
} }

} }

Our approach: automatic lock allocation

Goal: simplify concurrent programming
@ Remove burden of manual allocation from programmer
@ Aim to be strictly simpler: no extra language constructs

@ ldeal result: automatic allocation performance matches or exceeds
manual allocation performance

Contributions

Our contributions:
@ We investigate component-based lock allocation:

@ Coarse locking granularity
@ Construct a critical section interference graph

@ One lock per graph component
@ Experiment with many static compiler analyses

@ Show results for small and large Java benchmarks

The technique often performs well:

@ Matches manual allocation performance on 2, 4, 8-way hardware
for mtrt (SPEC JVM98), lusearch and xalan (DaCapo), and SPEC

JBB2005.

© Design

Analysis Pipeline

Initial Approximation

CS1:;---:CS3
class G { CSZ
public static int X, Y; o
} Interference Identification
l Thread-Local Objects Analysis
class T1 extends Runnable { Thread-Based Side Effect Analysis
run() {
synchronized(...) { // CS1 CSb—CSB
G.Y = G.X; o
; . CS2
synchronized(...) { // CS2
GX=GX+1; _
} Interference Pruning
} May Happen in Parallel Analysis
}
CS1—CsS3
class T2 extends Runnable {
run() {
synchronized(...) { // CS3 CS2
inta = G.Y; _
} Component-Based Lock Allocation
} Static Locking
} Dynamic Locking

CCSl—CS3>

CS2

Initial Approximation

Initial Approximation

CS1::---- =CS3
class G { ey
public static int X, Y; o
} Interference Identification
l Thread-Local Objects Analysis
class T1 extends Runnable { Thread-Based Side Effect Analysis
run() {
synchronized(...singletonObject...) { // CS1 CSlJ CS3
G.Y = G.X; o
} _ | | CS2
synchronized(...singletonObject...) { // CS2
GX=GX+1; _
} Interference Pruning
} May Happen in Parallel Analysis
}
CS1—CsS3
class T2 extends Runnable {
run() {
synchronized(...singletonObject...) { // CS3 €S2
inta = G.Y; :
} Component-Based Lock Allocation
} Static Locking
} Dynamic Locking

CCSl—CS3>

CS2

class G {
public static int X, Y;
}

class T1 extends Runnable {
run() {
synchronized(...) { // CS1
G.Y = G.X;«—_Read from X, thread-shared
} Write to Y, thread-shared
synchronized(...) { // CS2
G.X = G.X + 1yRead from X, thread-shared
} Write to X, thread-shared

}
}

class T2 extends Runnable {
run() {
synchronized(...) { // CS3
int a = G.Y;«—Read from Y, thread-shared
}
}
}

CS1——CS3

o
CS2

CS1——CS3

CS2

CCSl—CS3>

CS2

Thread-Based Side Effect Analysis

Initial Approximation

Interference Identification
Thread-Local Objects Analysis
Thread-Based Side Effect Analysis

Interference Pruning
May Happen in Parallel Analysis

Component-Based Lock Allocation
Static Locking
Dynamic Locking

May Happen in Parallel Analysis

Find and apply MHP information

class G {
public static int X, Y;
}

class T1 extends Runnable {
run() {
synchronized(...) { // CS1
G.Y = G.X;
}
synchronized(...) { // CS2
GX=GX+1;
}
}
}

class T2 extends Runnable {
run() {
synchronized(...) { // CS3
inta = G.Y;
}
}
}

CS1——CS3

)
CS2

CS1——CS3

CS2

CCSl—CS3>

CS2

Initial Approximation

Interference Identification
Thread-Local Objects Analysis
Thread-Based Side Effect Analysis

Interference Pruning
May Happen in Parallel Analysis

Component-Based Lock Allocation
Static Locking
Dynamic Locking

Component-Based Lock Allocation

Static Lock Allocation:
(Dynamic is the same in this case)

class G {
public static int X, Y;
}

class T1 extends Runnable {
run() {
synchronized(LockObjectl) { // CS1
GY = G.X;
}
GX=GX+1;
_}.
}
}

class T2 extends Runnable {
run() {
synchronized(LockObjectl) { // CS3
inta = G.Y;
}

}
public static Object LockObjectl =

new Object();

CS1——CS3

)
CS2

CS1——CS3

CS2

CCSl—CSED

CS2

Initial Approximation

Interference Identification
Thread-Local Objects Analysis
Thread-Based Side Effect Analysis

Interference Pruning
May Happen in Parallel Analysis

Component-Based Lock Allocation
Static Locking
Dynamic Locking

Finding Thread-Based Side Effects

Build on an existing side-effect analysis
@ ldentify fields that are read & written
@ Each field has a points-to set of possible base objects
Extend it to be thread-sensitive
@ Approximate the thread-visible effects of library calls
@ Exclude thread-local side effects

Use it to construct a critical section interference graph

Constructing an Interference Graph

class A {
public static int f;

synchronized void a() {
A.f =B.f + 1;
by
¥

class C {
public static int f;

synchronized void c() {
C.f=20C.f+1;
+
}

class B {
public static int f;

synchronized void b() {
B.f = B.f + D.f;
by
¥

class D {
public static int f£;

synchronized void d() {
D.f =D.f + 1;
}
¥

Constructing an Interference Graph

H—@
S

Interference Graph

N >

O O R
R O~ R~ @
o~ O oOolN
_ O = O J

Finding Thread-Local Objects

Thread-local object: object only read & written by a single thread
Similar to escape analysis

@ Partition the heap into thread-shared and thread-local data
@ Use information flow analysis to propagate thread-shared status

Values identified as thread-local do not require synchronized access

May Happen in Parallel Analysis

@ MHP analysis finds methods that execute concurrently

@ Several distinct steps:

@ Identify run-once and run-many statements

@ Identify run-once and run-many threads

© Categorize run-many threads as run-one-at-a-time or
run-many-at-time

@ Find methods that may happen in parallel based on thread
reachability

@ Critical sections that may not happen in parallel cannot interfere!

Run-Once Run-Many Analysis

foo() main()

[] run-once [[] run-many

Run-Once Run-Many Analysis

.t

foo() main()

[] run-once [[] run-many

Run-Once Run-Many Analysis

.t

foo() main()

[] run-once [[] run-many

Run-Once Run-Many Analysis

G

foo() main()

[] run-once [[] run-many

Run-Once Run-Many Analysis

.t

foo() main()

[] run-once [[] run-many

Run-Once Run-Many Analysis

.t

foo() main()

[] run-once [[] run-many

Thread Categorization

Thread t1, t2, t3

int i tl = new T1()
& run-once t1.start()
] run-many ¢
t2 = new T2()
T1:? ¢
i=0
T2:7? ¢
T3:7 if (i >0) |«
F T\
t3 = new T3()
t2.start() ¢
\ t3.start()
=i+ 1
if (i< 10) -

Thread Categorization

Thread t1, t2, t3
inti
[] run-once

] run-many

T1:7?
T2:7?
T3:7

Thread Categorization

Thread t1, t2, t3
inti
[] run-once

] run-many

T1: run-once
T2:7?
T3:7

Thread Categorization

Thread t1, t2, t3
inti
[] run-once

] run-many

T1: run-once
T2: run-once

T3:7

Thread Categorization

Thread t1, t2, t3
inti
[] run-once

] run-many

T1: run-once
T2: run-once

T3: run-many

Finding run-one-at-a-time threads

Thread t1, t2, t3
int i

[] run-once

] run-many

T1: run-once

T2: run-once

T3: Fea—aohy-
one-at-a-time

Finding run-one-at-a-time threads

t3.start(]
4 : [
tA.join() B
tC.join()
y
tB.join()

@ For each start, consider all joins:

Finding run-one-at-a-time threads

t3.start(
4 {
t3.join()
y
t3.join()

@ For each start, consider all joins:
@ Any valid join receiver must alias start receiver

Finding run-one-at-a-time threads

t3.start(

t3.join()

@ For each start, consider all joins:

@ Any valid join receiver must alias start receiver
@ Any valid join must post-dominate start

Finding run-one-at-a-time threads

Y
t3.start(

t3.join()

@ For each start, consider all joins:

@ Any valid join receiver must alias start receiver
@ Any valid join must post-dominate start
@ And not have loops to start between the start and join...

Finding run-one-at-a-time threads

t3.join()

@ For each start, consider all joins:

@ Any valid join receiver must alias start receiver
@ Any valid join must post-dominate start
@ And not have loops to start between the start and join...

@ If join is valid, check method validity:

@ Method must not be called recursively
@ Method must not happen in parallel with itself

Finding MHP Information

run-once

0
—
Q/

C

run-one-at-a-time

(-

D

run-many-at-a-time

OO0 w >

—_ = O O >

= = O Ol
= O = =M

= = = = O

MHP Information

Applying MHP Information

® ®

(W—®) ®
o 10 >< O

O © O—0© © ©
Interference Graph MHP Information Pruned Interference Graph
A B CD A B CD A B CD

All 1 0 O A0 0 1 1 A

Bi{1 1 01 e B|{0O 01 1 = B

C/0 01 0 Ci1 10 1 C

D0 1 0 1 D|{1 1 1 1 D

A simple Hadamard product

Applying MHP Information

® ®
(W—®) ™

o o X ;
o © O—© © ©
Interference Graph MHP Information Pruned Interference Graph

A B CD A B CD A B CD
All 1 0 O A0 0 1 1 A0 0 0 O
Bi{1 1 01 e B|{0O 01 1 = BI0O 0 0 1
C/0 01 0 Ci1 10 1 C/0 0 0O
D0 1 0 1 D|{1 1 1 1 D0 1 0 1

A simple Hadamard product

Component-Based Lock Allocation

Three kinds of component-based lock allocation:
O Singleton: a single static lock protects all components
Q Static: one static lock per component

© Dynamic: attempt to use per-data structure locks for each
component, otherwise static

Finally, isolated vertices with no self loops are unlocked

© Experimental Results

Experimental Setup

For each benchmark, we do 13 experiments:
@ control: original benchmark program

@ singleton: single static lock for all critical sections

@ 5 static locking allocations:

@ CHA: class hierarchy analysis points-to and side effects

@ Spark: context-insensitive points-to and side effects

© Spark-MHP: Spark with may happen in parallel [MHP] analysis
@ Spark-TLO-MHP: Spark with both TLO and MHP

@ 5 analogous dynamic locking allocations

11 benchmarks: 5 micro, 6 standard
64-bit AMD Machines (dual, 4-way, 4-way dual), Sun JDK1.5

Singleton Lock Slowdown

6 Performance Relative to Manual Allocation
0
c
= =
@]
©
=
O &
U) =
0
i -
=5
1| ' ——1

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8
traffic sync.methods sync.objects lusearch jbb2000 jbb2005

Relative Speedup of Using CHA

6 Performance Relative to Manual Allocation
[
i
; "
c
= =
@]
©
= -
O e
U) F====%
o
i I
T
T - e
1 | == B

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8
traffic sync.methods sync.objects lusearch jbb2000 jbb2005

Relative Speedup of Using Spark

6 Performance Relative to Manual Allocation
II
i
II E
¥ f
c
= =
@]
©
= -
O =
m e F=c==y
H =51
_ p=====51 —Irir‘lr =5}
faan]
e 55
aoe — oh
1 | =i { Hy

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8
traffic sync.methods sync.objects lusearch jbb2000 jbb2005

Relative Speedup of Adding MHP Analysis

6 Performance Relative to Manual Allocation
II
i
i ¢
F
0
c
= =
@]
©
= -
O =
U) o F=c==y
H ==
B e —IF—IFE¥ oes
faan]
He M
- n
_ - - - & =
1]]]] == Ty i i 1] ' 1

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8
traffic sync.methods sync.objects lusearch jbb2000 jbb2005

Relative Speedup of Adding TLO Analysis

slowdown

Performance Relative to Manual Allocation
i
1 0
{H
0
H N Hy
H ==
B R —IF—ITEH e
= _ .
i i o o H%Hk | i e |
2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8
traffic sync.methods sync.objects lusearch jbb2000 jbb2005

Relative Speedup of Using Dynamic Locking

slowdown

Performance Relative to Manual Allocation
i
A r
?ﬂ
0
H N 0
H ==
| II}HE—IFITEH-IF =
_ Hrg — _ { ==
T i | 1 U TTT EHEEIHHf;i T —IrE%E, = SESERE=Y = E,]
2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8
traffic sync.methods sync.objects lusearch jbb2000 jbb2005

Relative Speedup of Using Dynamic Locking

slowdown

Performance Relative to Manual Allocation

{E e T =TT 1] __ﬁ_*fgﬂ%

pcmab

8

2

4 8 2 4 8 2 4 8 2
xalan roller bank

mtrt

© Conclusions and Future Work

Conclusions

Singleton allocation is not generally viable
Points-to analysis precision is important
MHP analysis helps if it can split a larger component

TLO analysis usually has a negligible effect

e 6 6 ¢ ¢

Dynamic locking has a small impact; may degrade or improve
performance

@ Component-based allocation works surprisingly well for many
benchmarks

More precise compiler analyses
Finer locking granularities
Method synchronization

Critical section inference

e 6 6 ¢ ¢

Speculative locking and transactional memory

Thank you for your attention.

Related Work

[)

e ¢

[)

May Happen in Parallel analysis for Java (Naumovich et al. '99, Li '04).

Thread-sensitive points-to and escape analysis (Chang and Choi '04, Salcianu and
Rinard '01).

Thread-local objects analysis for synchronization elimination (Ruf '00).

Pessimistic atomic sections/transactions (McCloskey et al. '06, Hicks et al. '06).

Lock allocation

@ Concurrency graph (Sreedhar, Zhang, et al. '05).
@ ILP-based optimal allocations (Sreedhar, Zhang, et al. '05, Emmi et al. '07).
Static race detection (Naik et al."06, and many others).

Optimistic concurrency, transactional memory (see Larus & Rajwar '06).

