<|||

Software Group ! Compiler Technology

Array privatization in IBM static
compilers

-- technical report

CASCON 2005

October 17, 2005 © 2005 IBM Corporation

Compiler technology

Authors

Guansong Zhang, Erik Charlebois

and Roch Archambault

Compiler Development Team

IBM Toronto Lab, Canada

October 17, 2005 © 2005 IBM Corporation

Compiler technology

Overview

" Introduction and motivation
* Array data flow analysis

= Array data privatization

* Performance results

" Future work

* Possible usage

October 17, 2005 © 2005 IBM Corporation

Compiler technology

Expose limitations

* Compare SPEC2000FP and SPECOMP

* SPECOMP achieves good performance and
scalability

— Compare between explicit and auto-parallelization
* Expose missed opportunities

= 10 common benchmarks

— Compare on a loop-to-loop basis

October 17, 2005 © 2005 IBM Corporation

Compiler technology

Improved auto-parallelization performance

One CPU vs. two CPU runs

350

l Sequential
300 T Paralie

W Parallel+manual
250

time(sec.)

200
150
100 - I I
) I|I 11 I I 1] I|I|I
0,

NS \@"’\ @ Q i fo i » &
S K g @x@’b.@ K & &

October 17, 2005 © 2005 IBM Corporation

Compiler technology

Array privatization example

a = b
do 40 7 1, n
do 20 1 = 2, m
a(i) b(i) + c(1i)
20 continue
do 30 1 2, m
a(i) = a(i-1) + 4
30 continue
40 continue

print =, a(2:m)

October 17, 2005 © 2005 IBM Corporation

Compiler technology

Basic loop parallelizer

begin
for each loop nest in a procedure do
for each loop in the nest in the deprthfirst ovder (outer first) do
if the loop is user pavallel then
| break

if the loop is marked sequential, has side-effects etc then
L continue

if the loop has loop carried dependence then
try splitting the loop to eliminate dependence
if dependence not eliminated then

L continue

if loop cost is known at compile rime then
if the loop has not enough cost then
L break

else
L Insert code for mun-time cost estimate

Mark this loop auto parallel
break

end

October 17, 2005 © 2005 IBM Corporation

Compiler technology

Pre-parallelization Phase

* Induction variable identification
* Scalar Privatization --- only scalar !
* Reduction finding

* Loop transformations favoring parallelism

October 17, 2005 © 2005 IBM Corporation

Compiler technology

The concept of data privatization

= Data is local to each loop iteration
Do I =1, 10
Temp = ...

. = .. Temp ..

. Temp ..
Enddo

" Purpose: eliminating loop carried dependences.

October 17, 2005 © 2005 IBM Corporation

Compiler technology

The concept of data privatization (cont.)

* Array as temp data
do J =1, 10
do I =1, 10

Temp (I) = ...
end do
do I =1, 10
= Temp (1)
enddo
enddo

October 17, 2005 © 2005 IBM Corporation

Compiler technology

Array data flow and its structure

= Similar to data flow
— MayDef: array elements that may be written.
— MustDef: array elements that are definitely written.

— UpExpUse: array elements that may have an upward exposed use
* ause not preceded by a definition along a path from the loop header
— LiveOnEXxit: array elements that are used after the loop region.

* GARs: Guarded Array Regions (GARs).

— A GAR is a tuple(G,D),

* D is a bounded Regular Section Descriptor (RSD) for the accessed array
section,

* G is a guard that specifies the condition under which D is accessed
" Notes: many papers discussed the issue

October 17, 2005 © 2005 IBM Corporation

Compiler technology

Array privatization algorithm

for each array A in the loop do
for each GAR of A in the MayDef do

if (GAR in all iterations intersects the UpExpUse of A) then
| Give up privatizing A

else

if (GAR intersects the LiveOnEXxit of A) then

if (MustDef of A contains MayDef of A in all iterations) then
Mark GAR 1in MayDeft as private

| Mark GAR in MustDef as last private
else

if (MustDef of A contains LiveOnExit of A) then
Mark GAR 1n MayDeft as private

Mark GAR 1n LiveOnEXxit as last private

else
| Mark GAR 1 MayDet as private
if (UpExpUse of A exist) then

| Mark GAR in UpExpUse as first private

October 17, 2005 © 2005 IBM Corporation

Compiler technology

Loop normalization and array data flow

= Normalized loop

if (gard-expression) goto gard label
prelog
init induction wvariable to lower bound
loop lable:
loop body
computation based on induction wvariable
latch
increase induction wvariable
if (induction wvariable < upper bound)
goto loop lable
epilog
restore values if needed
gard lable:
outside the loop

October 17, 2005 © 2005 IBM Corporation

Compiler technology

Alias analysis and array data flow

= |deal situation: no alias at all.

— Other wise, you can not tell what is the precise
intersection of the two array section involved

= Alias coming from:
— Structural members, e.g. scalar replacement

— Function parameters,

* array is a shadow (not mapped data, alias to any global
array)

* Procedure summary may help
— Alias as fall back

October 17, 2005 © 2005 IBM Corporation

Compiler technology

Possible parallelization results

a =5

!Somp parallel do private a
!Somp firstprivate a, lastprivate a

do 40 7 = 1, n
do 20 i = 2, m
a(i) = b(i) + c(1i)
20 continue
do 30 i = 2, m
a(i) = a(i-1) + 4
30 continue

40 continue

print *, a(2:m)

October 17, 2005 © 2005 IBM Corporation

Compiler technology

Real case

do 13=2,n3-1 ! This Loop cannot be automatically parallelized.
! A dependency is carried by wvariable "ul".
! Ul and U2 are local temporary variables, so that
! the loop should be parallelized
do i2=2,n2-1

do 1i1=1,nl ! Loop is parallelized
ul(il) = u(il,i2-1,1i3) + u(il,iz2+1,13)
> + u(il,12,13-1) + u(il,1i2,13+1)
u2(il) = u(il,i2-1,13-1) + u(il,iz2+1,1i3-1)
> + u(il,1i2-1,13+1) + u(il,i2+1,1i3+1)
enddo
do 11=2,nl1-1 ! Loop 1is parallelized
r(il,i2,13) = v(il,1i2,13)
> - a(0) * u(il,iz2,1i3)
> - a(2) * (u2(il) + uwl((il-1) + wuwl(il+1))
> - a(3) * (u2(i1l1-1) + u2(il1+1))
enddo
enddo

enddo

October 17, 2005 © 2005 IBM Corporation

Compiler technology

NAS MG (-O3 —ghot —q64)

E sequential
[Juser-parallel

[auto-parallel

M auto-par-without-adf

October 17, 2005 © 2005 IBM Corporation

Compiler technology

Summary

" Challenges

— Compilation time

* Work with other optimizations
— Loop unroll

* Graph complexity
— Number of branches

* Array section caculation accuracy
— Memory usage

* Managing and reusing

October 17, 2005 © 2005 IBM Corporation

Compiler technology

Summary (cont.)

" Further improvement:

— Inter-procedural array data flow

* Procedure summary
* More accurate section information instead of using alias

— Symbolic range analysis
* Expression simplifier: lot of room to be improved
— Compilation efficiency

" Possible usage
— Auto parallelization
— Array contraction
— Array coalescing

October 17, 2005 © 2005 IBM Corporation

