
Software Group

October 17, 2005 © 2005 IBM Corporation

Compiler Technology

Array privatization in IBM static
compilers

-- technical report

CASCON 2005

Compiler technology

© 2005 IBM CorporationOctober 17, 2005

Guansong Zhang, Erik Charlebois

 and Roch Archambault

Compiler Development Team

IBM Toronto Lab, Canada

Authors

Compiler technology

© 2005 IBM CorporationOctober 17, 2005

Overview

 Introduction and motivation

 Array data flow analysis

 Array data privatization

 Performance results

 Future work

 Possible usage

Compiler technology

© 2005 IBM CorporationOctober 17, 2005

Expose limitations

 Compare SPEC2000FP and SPECOMP

 SPECOMP achieves good performance and
scalability
– Compare between explicit and auto-parallelization

 Expose missed opportunities

 10 common benchmarks
– Compare on a loop-to-loop basis

Compiler technology

© 2005 IBM CorporationOctober 17, 2005

Improved auto-parallelization performance
One CPU vs. two CPU runs

0

50

100

150

200

250

300

350

wupw
ise

sw
im

mgr
id

ap
plu

ga
lge

l

fa
ce

re
c

aps
i

luca
s

fm
a3

d

six
tra

ck
mes

a ar
t

eq
ua

ke

am
m

p

tim
e(

se
c.

)

Sequential
Parallel
Parallel+manual

Compiler technology

© 2005 IBM CorporationOctober 17, 2005

Array privatization example

Compiler technology

© 2005 IBM CorporationOctober 17, 2005

Basic loop parallelizer

Compiler technology

© 2005 IBM CorporationOctober 17, 2005

Pre-parallelization Phase

 Induction variable identification

Scalar Privatization --- only scalar !

Reduction finding

 Loop transformations favoring parallelism

Compiler technology

© 2005 IBM CorporationOctober 17, 2005

The concept of data privatization

 Data is local to each loop iteration
Do I = 1, 10
Temp = ...

... = … Temp …

 ... = … Temp …
Enddo

 Purpose: eliminating loop carried dependences.

Compiler technology

© 2005 IBM CorporationOctober 17, 2005

The concept of data privatization (cont.)

 Array as temp data
 do J = 1, 10
 do I = 1, 10

 Temp(I) = ...
 end do
 do I = 1, 10
 ... = … Temp (I) …

 enddo
enddo

Compiler technology

© 2005 IBM CorporationOctober 17, 2005

Array data flow and its structure

 Similar to data flow
– MayDef: array elements that may be written.
– MustDef: array elements that are definitely written.
– UpExpUse: array elements that may have an upward exposed use

• a use not preceded by a definition along a path from the loop header
– LiveOnExit: array elements that are used after the loop region.

 GARs: Guarded Array Regions (GARs).
– A GAR is a tuple(G,D),

• D is a bounded Regular Section Descriptor (RSD) for the accessed array
section,

• G is a guard that specifies the condition under which D is accessed
 Notes: many papers discussed the issue

Compiler technology

© 2005 IBM CorporationOctober 17, 2005

Array privatization algorithm

Compiler technology

© 2005 IBM CorporationOctober 17, 2005

Loop normalization and array data flow

 Normalized loop

Compiler technology

© 2005 IBM CorporationOctober 17, 2005

Alias analysis and array data flow

 Ideal situation: no alias at all.
– Other wise, you can not tell what is the precise

intersection of the two array section involved

 Alias coming from:
– Structural members, e.g. scalar replacement
– Function parameters,

• array is a shadow (not mapped data, alias to any global
array)

 Procedure summary may help
– Alias as fall back

Compiler technology

© 2005 IBM CorporationOctober 17, 2005

Possible parallelization results

Compiler technology

© 2005 IBM CorporationOctober 17, 2005

Real case

Compiler technology

© 2005 IBM CorporationOctober 17, 2005

NAS MG (-O3 –qhot –q64)

0

5

10

15

20

25

1 2 4

sequential
user-parallel
auto-parallel
auto-par-without-adf

Compiler technology

© 2005 IBM CorporationOctober 17, 2005

Summary

 Challenges
– Compilation time

• Work with other optimizations
– Loop unroll

• Graph complexity
– Number of branches

• Array section caculation accuracy
– Memory usage

• Managing and reusing

Compiler technology

© 2005 IBM CorporationOctober 17, 2005

Summary (cont.)

 Further improvement:
– Inter-procedural array data flow

• Procedure summary
• More accurate section information instead of using alias

– Symbolic range analysis
• Expression simplifier: lot of room to be improved

– Compilation efficiency
 Possible usage

– Auto parallelization
– Array contraction
– Array coalescing

