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Overview

 Introduction and motivation

 Array data flow analysis

 Array data privatization

 Performance results

 Future work

 Possible usage
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Expose limitations

 Compare SPEC2000FP and SPECOMP 

 SPECOMP achieves good performance and 
scalability
– Compare between explicit and auto-parallelization 

 Expose missed opportunities

 10 common benchmarks
– Compare on a loop-to-loop basis
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Improved auto-parallelization performance
One CPU vs. two CPU runs
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Array privatization example
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Basic loop parallelizer
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Pre-parallelization Phase 

 Induction variable identification

Scalar Privatization --- only scalar !

Reduction finding

 Loop transformations favoring parallelism
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The concept of data privatization

 Data is local to each loop iteration
Do I = 1, 10
Temp = ...

  
... = … Temp …

  ... = … Temp …
Enddo

 Purpose: eliminating loop carried dependences.
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The concept of data privatization (cont.)

 Array as temp data
  do J = 1, 10 
    do I = 1, 10

   Temp(I) = ...
   end do
   do I = 1, 10
    ... = … Temp (I) …

   enddo
enddo
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Array data flow and its structure

 Similar to data flow
– MayDef: array elements that may be written.
– MustDef: array elements that are definitely written.
– UpExpUse: array elements that may have an upward exposed use 

• a use not preceded by a definition along a path from the loop header
– LiveOnExit: array elements that are used after the loop region.

 GARs: Guarded Array Regions (GARs). 
– A GAR is a tuple(G,D), 

• D is a bounded Regular Section Descriptor (RSD) for the accessed array 
section, 

• G is a guard that specifies the condition under which D is accessed
 Notes: many papers discussed the issue
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Array privatization algorithm
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Loop normalization and array data flow

 Normalized loop
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Alias analysis and array data flow

 Ideal situation: no alias at all.
– Other wise, you can not tell what is the precise 

intersection of the two array section involved 

 Alias coming from:
– Structural members, e.g. scalar replacement
– Function parameters, 

• array is a shadow (not mapped data, alias to any global 
array)

 Procedure summary may help
– Alias as fall back
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Possible parallelization results
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Real case
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NAS MG (-O3 –qhot –q64)
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Summary

 Challenges
– Compilation time

• Work with other optimizations
– Loop unroll

• Graph complexity
– Number of branches

• Array section caculation accuracy
– Memory usage

• Managing and reusing
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Summary (cont.)

 Further improvement: 
– Inter-procedural array data flow

• Procedure summary
• More accurate section information instead of using alias

– Symbolic range analysis
• Expression simplifier: lot of room to be improved

– Compilation efficiency
 Possible usage 

– Auto parallelization
– Array contraction
– Array coalescing


