
IBM Software Group

Compilation Technology © 2005 IBM Corporation

Toward Deterministic Java Performance

Mark Stoodley, Mike Fulton
Toronto Lab, IBM Canada Ltd.

IBM Software Group

© 2005 IBM CorporationCompilation Technology

The Real-Time World

 Responsive in “real time”
– Often keyed to real world events
– Performing work on a regular basis
– Asynchronous events
– Graceful handling of truly exceptional conditions

 Deterministic performance key to meet response
time requirements

 Java performance not really responsive as-is
– But it’s a nice development environment
– Motivates the Real-Time Specification for Java

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Overview

 Real-Time Java

 Java performance isn’t really deterministic ✪

 Mitigating the Chaos

 Summary

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Real-Time Java

 JSR #1: Real-Time Specification for Java

 Facilities to support Real-Time programming
– Make performance more controllable & predictable
– Large-scale enhancements to Java

• Threading, scheduling
• Memory management
• Asynchronous event handling, control transfer, termination
• Physical memory access

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Example 1: Memory Management

 SPEC assumes that managed memory (garbage
collection) is incompatible with real-time needs

 New memory areas that are not collected
– Immortal memory
– Memory scopes

 New thread type “No Heap Realtime Thread”
– Not permitted to even see a heap reference
– No need to stop for any reason when GC occurs

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Java performance isn’t really deterministic

 Chaos lurks everywhere:
➼Thread scheduling is at the whim of the operating system

➼Garbage collection occurs “whenever” for “however long”
– JIT compilations occur “whenever” for “however long”
– Aggressive JITs recompile methods that seem “hot”
– JIT compilers employ many speculative optimizations
– Class loading occurs on demand

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Mitigating the JIT Chaos: stop doing “bad” stuff

 JIT compiling delays are unacceptable
– Also derivative effects: profiling, sampling
– Could run at low priority BUT risk priority inversion

 Ahead-of-Time (AOT) compilation a better option
– Takes compiler out of the run-time performance equation
– Possibly lower performance to deal with resolution order
– Derivative effects also removed
– BUT maybe more difficult to achieve high performance

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Mitigating the JIT Chaos: stop doing “bad” stuff

 Stop doing speculative optimizations
– No flat-word monitors

• Also simplifies priority-inversion support
– No monitor coarsening
– Profiling-based optimizations
– Not easy because JIT compilers speculate a LOT

 Devirtualization ok if all classes are pre-loaded

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Mitigating the JIT Chaos: stop doing “bad” stuff

 Class loading is a trouble spot
– Loading one class often requires loading other classes
– Once class is loaded, devirtualizations may be invalid

• Lots of call sites may need to be patched for correctness
– Updates many VM data structures also accessed by GC

• Particularly a problem for NoHeapRealtimeThreads

 Application-level pre-loading is one option
– Collect list of loaded classes in one execution
– “Force” class to load before application begins executing

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Summary

 Java not suitable as-is for Real-Time workloads

 Real-Time Specification enhances Java for RT

 Java VMs have many sources of nondeterminism
– GC, thread scheduling, JIT compiler

 These problems can be largely mitigated
– Ahead-of-Time compiles, class preloading, stop doing

speculative optimizations
– Lower sustained performance but more deterministic

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Contact Information and Acknowledgments

Mark Stoodley

Toronto Lab, IBM Canada Ltd.

mstoodle@ca.ibm.com

With thanks to:

Mike Fulton

mailto:mstoodle@ca.ibm.com

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Backup Slides

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Example 2: Asynchronous Transfer of Control (ATC)

 RT programs need to respond to truly exceptional
conditions quickly and drastically

 Thread that detects condition may need to
interrupt other threads actively working

 ATC provides facilities to mark methods that can
be safely interrupted
– More draconian exception semantics in such methods

 Also mechanisms to initiate such interruptions

