
Detecting Behavior Phases
in Utility Programs

Presenter: Xipeng Shen

Joint work with C. Ding,
S. Dwarkadas, and M. L. Scott

University of Rochester



2

Introduction

 Complex program analysis has evolved from
static code analysis to behavior analysis

 Behavior analysis
– To discover common behavior patterns for all

executions through training executions
– The patterns enable behavior prediction on any

execution



3

Behavior Phase

 Definition
– A unit of the recurring behavior

 Captures high-level behavior patterns
– Enables coarse-grain memory control and

program parallelization
 Provides program behavior prediction

– Guides dynamic software and hardware
optimizations



4

Utility Programs

 Take a group of requests as inputs and serve
them one by one
– GCC: compile function by function
– Compilers, compressions, transcoding utilities,

interpreters, servers, ...
 Big challenges for phase analysis

– Dynamic data and control structures
– Strongly input-dependent behavior



5

Instruction Per Cycle(IPC) of GCC



6

Outline

 Introduction
 Technology

– Active profiling
– Regularity filtering
– Consistency filtering

 Evaluation
 Related work
 Conclusions



7

Active Profiling

Strongly input dependent
normal inputs

Irregular
behavior with
no repetitions

regular inputs

Regular
behavior with

excellent repetitions

 Converts challenges to opportunities



8

GCC Normal & Regular IPC Graph

IPC on normal input IPC on regular input



9

Regularity Filtering

 Filtering on dynamic basic block trace
– Frequency-based filtering

 Keep block b only if freq(b) equals the number
of requests

– Distance-based filtering:
 Keep block b only if it has the similar recurring

distance pattern as the majority



10

Consistency Filtering

 Profiling on a normal input
– Check consistency of the markers
– Find phase markers common to most normal

request handling



11

Evaluation

 Five SPEC95 and SPEC2k integer
benchmarks
– GCC, Compress, LI, Vortex, Parser

 Detection: Digital Alpha machines
– ATOM: Binary code instrumentor

 Test: IBM POWER4 pSeries
– PMAPI: hardware performance counter



12

Regularity across Request
Handling (GCC)



13

Regularity across Request
Handling (GCC)



14

Regularity across Executions on
Different Inputs (GCC)

scilab 166



15

Phase Behavior Consistency

 Consistency is the base for prediction
 Comparison to subroutine phases

– Behavior phases have 2.6 to 21 times smaller variations in
cache hit rates

 Comparison to ideal interval phases
– For GCC and Compress, behavior phases have 1.7 to 4.3

times smaller variations
– For Vortex, LI, Parser, both kinds of phases have very low

variations (0.3% to 1.6%)
– Unlike interval phase analysis, behavior analysis requires

no thresholds



16

Uses

 Preventive memory management
– 44% speedup (LI)

 Behavior-based coarse-grain parallelization
– 2x speedup on 4-CPU Xeon machines, 8x on 16-

CPU Sunfire machines (GZip & Parser)
 Phase-based memory monitoring

– Predict memory demand
– Memory leak detection



17

Related Work

 Locality phases
– Not working for utility programs

 Code structure-based phases
– Rely on static program structure

 Interval phases
– Run-time overhead
– Hard to determine the good interval length



18

Conclusions

 An active profiling based approach to analyze utility
programs’ behavior phases

 Captures coarse-grain behavior regularities
 Enables new program improvement techniques

– Preventive garbage collection
– Behavior-based parallelization
– Memory usage monitoring and memory leak detection

 For more info, see our technical report:
http://www.cs.rochester.edu/u/xshen/TR848.pdf



The End

Thanks!


