Software Group Compilation Technology

October 17, 2005 © 2005 IBM Corporation

Software Group | Compilation Technology

Agenda

= Adaptive compilation in the TR JIT
" Class Load Phase
= Asynchronous compilation

" Limiting the negative effect of very long
compilations

= Ongoing work
— Improvements to async compilation

— AOT

© 2005 IBM Corporation

Software Group | Compilation Technology

Adaptive Compilation in TR JIT

= Methods start out being interpreted

interpreted

= After N invocations methods get
compiled at ‘warm’ level

= Sampling thread used to identify
hot methods

= Methods may get recompiled at
‘hot’ or ‘scorching’ levels

" Transition to ‘scorching’ goes
through a temporary profiling step

3 | © 2005 IBM Corporation

Software Group | Compilation Technology

Performance

30

'8‘ 25

E "

_g 15

3 10

g

© 5

Comparison of compilation time for
different optimization levels

O Interpreted
B noOpt

O cold

O warm

B hot

@ scorching
B Adaptive

© 2005 IBM Corporation

Software Group | Compilation Technology

Performance
00.00 Performance comparison of
50.00 different optimization levels
O Interpreted
. 40.00 2 o0t
% . O cold
g,' 00 O warm
@ 20.00 B hot
| @ scorching
10.00 - | Adaptive
0.00 -
F ¢ T S
N N Qq‘b
OO Q
&

5 | © 2005 IBM Corporation

Software Group | Compilation Technology

How About Applications Without Hotspots

= WebSphere AppServer startup
—Very flat profile

No Adaptive
Compilation

Methods Warm=36700

compiled

Time spent
compiling

115 sec

161 sec

Startup-time

With Adaptive
Compilation

Warm=2750,
hot=11
17.3 sec

21.5 sec

© 2005 IBM Corporation

1
1
..||

Software Group | Compilation Technology

Class-Load-Phase

= Intuition: Methods compiled during startup phase may
not be important during application run phase

= Detect phases when class loading is intense
= Reduce optimization level to “cold” during such phases

1.2

Effect of ClassLoadPhase

0.8

& default
H "cold”
O ClassLoadPhase

0.6

0.4 -

Relative performanc

0.2

WASG6 Startup Time Trade6 throughput

7 | © 2005 IBM Corporation

Software Group | Compilation Technology

Asynchronous Compilation

" Synchronous compilation

— Application thread places compilation request and
blocks waiting for the compilation to finish

= Asynchronous compilation

— Application thread does not wait for the
compilation result

= JIT compilations performed on a separate
compilation thread

8 | © 2005 IBM Corporation

Software Group | Compilation Technology

Asynchronous Compilation

* Implementation

— Synchronous compilation still needed in some cases
(e.g. pre-existence)

— Synchronous and asynchronous compilation must
coexist

— Queue of compilation requests
= Advantages

— Takes advantage of available processors on SMP
machines by increased parallelism

— Allows performance improvements in uniprocessors
by changing compilation thread priority

— Allows reordering of compilation requests

© 2005 IBM Corporation

Software Group | Compilation Technology

Performance Results — Short Running Apps.

1.2
SPECjvm98, first run, AMD64 2P@1.6GHz
I
5 08"
5
¢ 0.6 |
g O SYNC
.E 0.4 B ASYNC
3
& 0.2
O |
o N
\06 &
S
$)

= Asynchronous compilation on SMP reduces
execution time of short benchmarks

10 | © 2005 IBM Corporation

Software Group | Compilation Technology

Limiting Negative Effect of Long Compilations

* Compilations may impede GC operation
— GC requires exclusive VM access

— Cannot allow class unloading while compilation in
progress = Compilations require VM access

= Solution

— Compilation thread periodically releases and
reacquires VM access allowing GC to cut-in

— Upon re-acquiring VM access, check if GC
unloaded any classes

— If classes were unloaded, abort current
compilation and retry

1 | © 2005 IBM Corporation

Software Group | Compilation Technology

Ongoing Improvements to Asynchronous Compilation

* IJdea

— Use thread priorities to smooth out the effects
of compilation - effectively interleave
compilation with execution

* Implementation
— Don't use more than X% CPU for compilation

— Use the queue of methods as a buffer

— accumulate work during periods of heavy
utilization

— solve the backlog when CPU is lightly used or idle
(due to IO for instance)

— Prioritize compilation requests in the queue

12 | © 2005 IBM Corporation

Software Group | Compilation Technology

Performance - Uniprocessors

1.2

SPECjvm98, first run

E Sync
B Dynamic

Normalized execution time

13 | © 2005 IBM Corporation

Software Group | Compilation Technology

Ahead Of Time (AOT) Compilation

= Using the JIT as a static compiler
= Fully compliant code

Used by J2ME customers to decrease footprint by
eliminating the JIT

Will be used by the Real Time offering to eliminate the
possibility of nondeterministic behaviour introduced by the
JIT

= Experimenting with combining AOT and JIT compilation to
improve startup times

14 | © 2005 IBM Corporation

Software Group | Compilation Technology

Eclipse 3.0.1 Startup Times

HotSpot Server

HotSpot Client

J9 default

J9 with Shared Classes

J9 w ith Shared Classes and
AOT

0 1 2 3 4 5 6 7

(oo}

Startup Time (s)

15 | © 2005 IBM Corporation

Software Group | Compilation Technology

16 | © 2005 IBM Corporation

