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Agenda

 Adaptive compilation in the TR JIT
 Class Load Phase
 Asynchronous compilation
 Limiting the negative effect of very long 

compilations
 Ongoing work

– Improvements to async compilation

– AOT
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Adaptive Compilation in TR JIT
 Methods start out being interpreted

 After N invocations methods get 
compiled at ‘warm’ level

 Sampling thread used to identify 
hot methods

 Methods may get recompiled at 
‘hot’ or ‘scorching’ levels

 Transition to ‘scorching’ goes 
through a temporary profiling step

warm

hot

scorching

profiling

interpreted
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Performance
Comparison of compilation time for 

different optimization levels
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Performance
Performance comparison of 
different optimization levels
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How About Applications Without Hotspots

 WebSphere AppServer startup
–Very flat profile

21.5 sec161 secStartup-time

17.3 sec115 secTime spent 
compiling

Warm=2750, 
hot=11

Warm=36700Methods 
compiled

With Adaptive 
Compilation

No Adaptive 
Compilation
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Class-Load-Phase
 Intuition: Methods compiled during startup phase may 

not be important during application run phase
 Detect phases when class loading is intense
 Reduce optimization level to “cold” during such phases

Effect of ClassLoadPhase
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Asynchronous Compilation

 Synchronous compilation
– Application thread places compilation request and 

blocks waiting for the compilation to finish

 Asynchronous compilation
– Application thread does not wait for the 

compilation result

 JIT compilations performed on a separate 
compilation thread
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Asynchronous Compilation
 Implementation

– Synchronous compilation still needed in some cases 
(e.g. pre-existence)

– Synchronous and asynchronous compilation must 
coexist

– Queue of compilation requests

 Advantages
– Takes advantage of available processors on SMP 

machines by increased parallelism

– Allows performance improvements in uniprocessors 
by changing compilation thread priority

– Allows reordering of compilation requests



10

Compilation Technology

© 2005 IBM Corporation

Software Group

Performance Results – Short Running Apps.

 Asynchronous compilation on SMP reduces 
execution time of short benchmarks

SPECjvm98, first run, AMD64 2P@1.6GHz
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Limiting Negative Effect of Long Compilations

 Compilations may impede GC operation
– GC requires exclusive VM access

– Cannot allow class unloading while compilation in 
progress  Compilations require VM access 

 Solution
– Compilation thread periodically releases and 

reacquires VM access allowing GC to cut-in

– Upon re-acquiring VM access, check if GC 
unloaded any classes

– If classes were unloaded, abort current 
compilation and retry
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 Idea
– Use thread priorities to smooth out the effects 

of compilation - effectively interleave 
compilation with execution

 Implementation
– Don’t use more than X% CPU for compilation

– Use the queue of methods as a buffer
– accumulate work during periods of heavy 

utilization
– solve the backlog when CPU is lightly used or idle 

(due to IO for instance)

– Prioritize compilation requests in the queue

Ongoing Improvements to Asynchronous Compilation
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Performance - Uniprocessors

SPECjvm98, first run
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Ahead Of Time (AOT) Compilation

 Using the JIT as a static compiler
 Fully compliant code
 Used by J2ME customers to decrease footprint by 

eliminating the JIT
 Will be used by the Real Time offering to eliminate the 

possibility of nondeterministic behaviour introduced by the 
JIT

 Experimenting with combining AOT and JIT compilation to 
improve startup times
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J9 w ith Shared Classes and
AOT

J9 w ith Shared Classes

J9 default

HotSpot Client

HotSpot Server

Startup Time (s)

Eclipse 3.0.1 Startup Times

Hardware: 1P@1.2GHz Pentium3 M, Windows32 Options:-Xmx512m -Xms512m for all tests
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