
Compilation Technology

October 17, 2005 © 2005 IBM Corporation

Software Group

Reducing Compilation Overhead
 in J9/TR

Marius Pirvu, Derek Inglis, Vijay Sundaresan

2

Compilation Technology

© 2005 IBM Corporation

Software Group

Agenda

 Adaptive compilation in the TR JIT
 Class Load Phase
 Asynchronous compilation
 Limiting the negative effect of very long

compilations
 Ongoing work

– Improvements to async compilation

– AOT

3

Compilation Technology

© 2005 IBM Corporation

Software Group

Adaptive Compilation in TR JIT
 Methods start out being interpreted

 After N invocations methods get
compiled at ‘warm’ level

 Sampling thread used to identify
hot methods

 Methods may get recompiled at
‘hot’ or ‘scorching’ levels

 Transition to ‘scorching’ goes
through a temporary profiling step

warm

hot

scorching

profiling

interpreted

4

Compilation Technology

© 2005 IBM Corporation

Software Group

Performance
Comparison of compilation time for

different optimization levels

0

5

10

15

20

25

30

co
mpress jes

s db
jav

ac

mpeg
au

dio
mtrt jac

k

SPECjbb

C
om

pi
la

tio
n

tim
e

(s
ec

)

Interpreted
noOpt
cold
warm
hot
scorching
Adaptive

5

Compilation Technology

© 2005 IBM Corporation

Software Group

Performance
Performance comparison of
different optimization levels

0.00

10.00

20.00

30.00

40.00

50.00

60.00

co
mpress jes

s db
jav

ac

mpeg
au

dio mtrt jac
k

SPECjbb

Sp
ee

du
p

Interpreted
noOpt
cold
warm
hot
scorching
Adaptive

6

Compilation Technology

© 2005 IBM Corporation

Software Group

How About Applications Without Hotspots

 WebSphere AppServer startup
–Very flat profile

21.5 sec161 secStartup-time

17.3 sec115 secTime spent
compiling

Warm=2750,
hot=11

Warm=36700Methods
compiled

With Adaptive
Compilation

No Adaptive
Compilation

7

Compilation Technology

© 2005 IBM Corporation

Software Group

Class-Load-Phase
 Intuition: Methods compiled during startup phase may

not be important during application run phase
 Detect phases when class loading is intense
 Reduce optimization level to “cold” during such phases

Effect of ClassLoadPhase

0

0.2

0.4

0.6

0.8

1

1.2

WAS6 Startup Time Trade6 throughput

R
el

at
iv

e
pe

rf
or

m
an

ce

default
"cold"
ClassLoadPhase

8

Compilation Technology

© 2005 IBM Corporation

Software Group

Asynchronous Compilation

 Synchronous compilation
– Application thread places compilation request and

blocks waiting for the compilation to finish

 Asynchronous compilation
– Application thread does not wait for the

compilation result

 JIT compilations performed on a separate
compilation thread

9

Compilation Technology

© 2005 IBM Corporation

Software Group

Asynchronous Compilation
 Implementation

– Synchronous compilation still needed in some cases
(e.g. pre-existence)

– Synchronous and asynchronous compilation must
coexist

– Queue of compilation requests

 Advantages
– Takes advantage of available processors on SMP

machines by increased parallelism

– Allows performance improvements in uniprocessors
by changing compilation thread priority

– Allows reordering of compilation requests

10

Compilation Technology

© 2005 IBM Corporation

Software Group

Performance Results – Short Running Apps.

 Asynchronous compilation on SMP reduces
execution time of short benchmarks

SPECjvm98, first run, AMD64 2P@1.6GHz

0

0.2

0.4

0.6

0.8

1

1.2

db jes
s

mtrt
mpe

g
jac

k
jav

ac

co
mpress

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

SYNC
ASYNC

11

Compilation Technology

© 2005 IBM Corporation

Software Group

Limiting Negative Effect of Long Compilations

 Compilations may impede GC operation
– GC requires exclusive VM access

– Cannot allow class unloading while compilation in
progress  Compilations require VM access

 Solution
– Compilation thread periodically releases and

reacquires VM access allowing GC to cut-in

– Upon re-acquiring VM access, check if GC
unloaded any classes

– If classes were unloaded, abort current
compilation and retry

12

Compilation Technology

© 2005 IBM Corporation

Software Group

 Idea
– Use thread priorities to smooth out the effects

of compilation - effectively interleave
compilation with execution

 Implementation
– Don’t use more than X% CPU for compilation

– Use the queue of methods as a buffer
– accumulate work during periods of heavy

utilization
– solve the backlog when CPU is lightly used or idle

(due to IO for instance)

– Prioritize compilation requests in the queue

Ongoing Improvements to Asynchronous Compilation

13

Compilation Technology

© 2005 IBM Corporation

Software Group

Performance - Uniprocessors

SPECjvm98, first run

0

0.2

0.4

0.6

0.8

1

1.2

_2
01

_c
om

pre
ss

_2
02

_je
ss

_2
09

_d
b

_2
13

_ja
va

c

_2
22

_m
pe

gau
dio

_2
27

_m
trt

_2
28

_ja
ck

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Sync
Dynamic

14

Compilation Technology

© 2005 IBM Corporation

Software Group

Ahead Of Time (AOT) Compilation

 Using the JIT as a static compiler
 Fully compliant code
 Used by J2ME customers to decrease footprint by

eliminating the JIT
 Will be used by the Real Time offering to eliminate the

possibility of nondeterministic behaviour introduced by the
JIT

 Experimenting with combining AOT and JIT compilation to
improve startup times

15

Compilation Technology

© 2005 IBM Corporation

Software Group

4.03

4.53

5.08

5.74

7.13

0 1 2 3 4 5 6 7 8

J9 w ith Shared Classes and
AOT

J9 w ith Shared Classes

J9 default

HotSpot Client

HotSpot Server

Startup Time (s)

Eclipse 3.0.1 Startup Times

Hardware: 1P@1.2GHz Pentium3 M, Windows32 Options:-Xmx512m -Xms512m for all tests

16

Compilation Technology

© 2005 IBM Corporation

Software Group

?

