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Hardware Division

"PPC fdiv, fdivs

"Advantages
f accurate (correctly rounded)
f handles exceptional cases (Inf, NaN)
f lower latency than SW
"Disadvantages

f occupies FPU completely
f inhibits parallelism
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Alternatives to HW division

"Vector libraries
f MASS
f higher overhead, greater speedup

"In-lined software division
f low overhead, medium speedup
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Rationale for Software Division

"Write SW division algorithm in terms of
HW arithmetic instructions

f Newton's method or Taylor series
"Latency will be higher than HW division

"But...SW instructions can be interleaved, so
throughput may be better

"Requires enough independent instructions
to interleave
f loop of divisions
f other work © Copyright IBM Corp. 2005



Newton's Method

"To find x such that £(x) = 0,

"Initial guess xo
"Xn+1 = Xn - f(Xn)/1'(xn), n=0, 1, 2....
"Provided xo is close enough

f xn converges to x

f It converges quadratically |Xn+1-X| < ¢[Xn-X|"2

f Number of bits of accuracy doubles with each
iteration
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Newton's Method

I
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Newton Iteration for Division

"For 1/b, let f(x) =1/x-b
"For a/b, use a*(1/b) or f(x) =a/x-b
"Algorithm for 1/b

f xo0 ~1/b initial guess

fe=1- b*yo
f x1=xo0+ eo*xo
f e1=eo*eo

[ x2=x1+ e1*x1
f etc...
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How Many Iterations Needed?

"Powers3 reciprocal estimate instructions
f FRES (single precision), FRE (double prec.)
f |relative error| <=2/(-8)
"Floating-point precision
f single:24 bits
f double: 53 bits
"Newton iterations
f error: 24(-16), 24(-32), 2(-64), 2°(-128)
f single: 2 iterations for 1 ulp

f double: 3 iterations for 1 ulp
f +1 iteration for correct roundif (0.5 uiiys)"”



Taylor Series tor Reciprocal

"x0 ~ 1/b initial guess
"e=1-b xo
"1/b = xo/(b x0) = xo0 (1/(1-¢))
=x0(1+et+e”2+e”3+e4+...)
"Algorithm (6 terms)
fe=1-d*xo
fti=05+e*e
fq=x0+x0%e
f t2=0.75 + t1*ta
f ts=qi%e

f Jz2 = Xo + t2*t3 © Copyright IBM Corp. 2005



Speed/Accuracy tradeott

"IBM compilers have -qstrict/-qnostrict

"_gstrict: SW result should match HW
division exactly

"_gnostrict: SW result may be slightly less
accurate for speed
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Exceptions

"Even when a/b is representable...

"1/b may underflow
f a~b ~huge, a/b ~ 1, 1/b denormalized
f Causes loss of accuracy
"1/b may overtlow
f a, b denormalized, a/b ~ 1, 1/b = Inf
f Causes SW algorithm to produce NaN
"Handle with tests in algorithm

f Use HW divide for exceptional cases
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Algorithm variations

"User callable built-in functions
f swdiv(a,b): double precision, checking
f swdivs(a,b): single precision, checking
f swdiv_nochk(a,b): double, non-checking
f swdivs nochk(a,b): single, non-checking
"Accuracy of swdiv, swdiv_nochk depends on
-gstrict/-qnostrict

" nochk versions faster but have argument

restrictions
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Accuracy and Performance

swdivs

swdivs nochk
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Automatic Generation of
Software Division

"The swdivs and swdiv algorithms can also
be automatically generated by the compiler

"Compiler can detect situations where
throughput is more important than latency
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Automatic Generation of
Software Division

"In straight-line code, we use a heuristic that
calculates how much FP can be executed in
parallel

f independent instructions are good, especially
other divides

f dependent instructions are bad (they increase
latency)
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Automatic Generation of
Software Division

"In modulo scheduled loops software-divide
code can be pipelined, interleaving multiple
iterations

"Divides are expanded if divide does not
appear in a recurrence (cyclic data-
dependence)
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Summary

"Software divide algorithms
f user callable
f compiler generated

"Loops of divides
f up to 1.77x speedup

"UMT2K benchmark
f 1.19x speedup
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