
Robert Enenkel, Allan MartinRobert Enenkel, Allan Martin
IBMIBM®® Toronto Lab Toronto Lab

Speeding Up Floating-Speeding Up Floating-
Point Division With In-Point Division With In-
lined Iterative Algorithmslined Iterative Algorithms

© Copyright IBM Corp. 2005

OutlineOutline

Hardware floating-point divisionHardware floating-point division
The case for software divisionThe case for software division
Software division algorithmsSoftware division algorithms
Special cases/tradeoffsSpecial cases/tradeoffs
Performance resultsPerformance results
Automatic generationAutomatic generation

© Copyright IBM Corp. 2005

Hardware DivisionHardware Division

PPC fdiv, fdivsPPC fdiv, fdivs
AdvantagesAdvantages
ƒ accurate (correctly rounded)accurate (correctly rounded)
ƒ handles exceptional cases (Inf, NaN)handles exceptional cases (Inf, NaN)
ƒ lower latency than SWlower latency than SW

DisadvantagesDisadvantages
ƒ occupies FPU completelyoccupies FPU completely
ƒ inhibits parallelisminhibits parallelism

© Copyright IBM Corp. 2005

Alternatives to HW divisionAlternatives to HW division

Vector librariesVector libraries
ƒ MASSMASS
ƒ higher overhead, greater speeduphigher overhead, greater speedup

In-lined software divisionIn-lined software division
ƒ low overhead, medium speeduplow overhead, medium speedup

© Copyright IBM Corp. 2005

Rationale for Software DivisionRationale for Software Division

Write SW division algorithm in terms of Write SW division algorithm in terms of
HW arithmetic instructionsHW arithmetic instructions
ƒ Newton's method or Taylor seriesNewton's method or Taylor series

Latency will be higher than HW divisionLatency will be higher than HW division
But...SW instructions can be interleaved, so But...SW instructions can be interleaved, so
throughput may be betterthroughput may be better
Requires enough independent instructions Requires enough independent instructions
to interleaveto interleave
ƒ loop of divisionsloop of divisions
ƒ other workother work

© Copyright IBM Corp. 2005

Newton's MethodNewton's Method

To find x such that f(x) = 0,To find x such that f(x) = 0,
Initial guess xInitial guess x00

xxn+1n+1 = x = xnn - f(x - f(xnn)/f'(x)/f'(xnn), n=0, 1, 2,...), n=0, 1, 2,...
Provided xProvided x00 is close enough is close enough
ƒ xxnn converges to x converges to x
ƒ It converges quadratically |xIt converges quadratically |xn+1n+1-x| < c|x-x| < c|xnn-x|^2-x|^2
ƒ Number of bits of accuracy doubles with each Number of bits of accuracy doubles with each

iterationiteration

© Copyright IBM Corp. 2005

Newton's Method Newton's Method

© Copyright IBM Corp. 2005

Newton Iteration for DivisionNewton Iteration for Division

For 1/b, let f(x) = 1/x - bFor 1/b, let f(x) = 1/x - b
For a/b, use a*(1/b) or f(x) = a/x - bFor a/b, use a*(1/b) or f(x) = a/x - b
Algorithm for 1/bAlgorithm for 1/b
ƒ xx00 ~ 1/b initial guess ~ 1/b initial guess
ƒ ee00 = 1 - b*y = 1 - b*y00

ƒ xx11 = x = x00 + e + e00*x*x00

ƒ ee11 = e = e00*e*e00

ƒ xx22 = x = x11 + e + e11*x*x11

ƒ etc...etc...

© Copyright IBM Corp. 2005

How Many Iterations Needed?How Many Iterations Needed?
Power5 reciprocal estimate instructionsPower5 reciprocal estimate instructions
ƒ FRES (single precision), FRE (double prec.)FRES (single precision), FRE (double prec.)
ƒ |relative error| <= 2^(-8)|relative error| <= 2^(-8)

Floating-point precisionFloating-point precision
ƒ single:single: 24 bits24 bits
ƒ double:double: 53 bits53 bits

Newton iterationsNewton iterations
ƒ error: 2^(-16), 2^(-32), 2^(-64), 2^(-128)error: 2^(-16), 2^(-32), 2^(-64), 2^(-128)
ƒ single: single: 2 iterations for 1 ulp2 iterations for 1 ulp
ƒ double:double: 3 iterations for 1 ulp3 iterations for 1 ulp
ƒ +1 iteration for correct rounding (0.5 ulps)+1 iteration for correct rounding (0.5 ulps)

© Copyright IBM Corp. 2005

Taylor Series for ReciprocalTaylor Series for Reciprocal
xx00 ~ 1/b initial guess ~ 1/b initial guess
e = 1 - b xe = 1 - b x00

1/b = x1/b = x00/(b x/(b x00) = x) = x00 (1/(1-e)) (1/(1-e))
 = x = x00 (1 + e + e^2 + e^3 + e^4 + ...) (1 + e + e^2 + e^3 + e^4 + ...)
Algorithm (6 terms)Algorithm (6 terms)
ƒ e = 1 - d*xe = 1 - d*x00

ƒ tt11 = 0.5 + e * e = 0.5 + e * e
ƒ qq11 = x = x00 + x + x00 * e * e
ƒ tt22 = 0.75 + t = 0.75 + t11*t*t11

ƒ tt33 = q = q11*e*e
ƒ qq22 = x = x00 + t + t22*t*t33

© Copyright IBM Corp. 2005

Speed/Accuracy tradeoffSpeed/Accuracy tradeoff

IBM compilers have -qstrict/-qnostrictIBM compilers have -qstrict/-qnostrict
-qstrict: SW result should match HW -qstrict: SW result should match HW
division exactlydivision exactly
-qnostrict: SW result may be slightly less -qnostrict: SW result may be slightly less
accurate for speedaccurate for speed

© Copyright IBM Corp. 2005

ExceptionsExceptions

Even when a/b is representable...Even when a/b is representable...
1/b may underflow1/b may underflow
ƒ a ~ b ~ huge, a/b ~ 1, 1/b denormalizeda ~ b ~ huge, a/b ~ 1, 1/b denormalized
ƒ Causes loss of accuracyCauses loss of accuracy

1/b may overflow1/b may overflow
ƒ a, b denormalized, a/b ~ 1, 1/b = Infa, b denormalized, a/b ~ 1, 1/b = Inf
ƒ Causes SW algorithm to produce NaNCauses SW algorithm to produce NaN

Handle with tests in algorithmHandle with tests in algorithm
ƒ Use HW divide for exceptional casesUse HW divide for exceptional cases

© Copyright IBM Corp. 2005

Algorithm variationsAlgorithm variations

User callable built-in functionsUser callable built-in functions
ƒ swdiv(a,b): double precision, checkingswdiv(a,b): double precision, checking
ƒ swdivs(a,b): single precision, checkingswdivs(a,b): single precision, checking
ƒ swdiv_nochk(a,b): double, non-checkingswdiv_nochk(a,b): double, non-checking
ƒ swdivs_nochk(a,b): single, non-checkingswdivs_nochk(a,b): single, non-checking

Accuracy of swdiv, swdiv_nochk depends on Accuracy of swdiv, swdiv_nochk depends on
-qstrict/-qnostrict-qstrict/-qnostrict
_nochk versions faster but have argument _nochk versions faster but have argument
restrictionsrestrictions

© Copyright IBM Corp. 2005

Accuracy and PerformanceAccuracy and Performance
Power5
speedup ratio

Power4
 speedup ratio

Power5
ulps max error

Power4
ulps max error

swdivs 1.07 1.05 0.5 0.5

swdivs_nochk 1.46 1.28 0.5 0.5

swdiv strict 1.05 0.5

swdiv nostrict 1.50 1.5

swdiv_nochk
 strict

1.51 0.5

swdiv_nochk
 nostrict

1.77 1.5

© Copyright IBM Corp. 2005

Automatic Generation of Automatic Generation of
Software DivisionSoftware Division
The swdivs and swdiv algorithms can also The swdivs and swdiv algorithms can also
be automatically generated by the compilerbe automatically generated by the compiler
Compiler can detect situations where Compiler can detect situations where
throughput is more important than latencythroughput is more important than latency

© Copyright IBM Corp. 2005

Automatic Generation of Automatic Generation of
Software DivisionSoftware Division
In straight-line code, we use a heuristic that In straight-line code, we use a heuristic that
calculates how much FP can be executed in calculates how much FP can be executed in
parallelparallel
ƒ independent instructions are good, especially independent instructions are good, especially

other dividesother divides
ƒ dependent instructions are bad (they increase dependent instructions are bad (they increase

latency)latency)

© Copyright IBM Corp. 2005

Automatic Generation of Automatic Generation of
Software DivisionSoftware Division
In modulo scheduled loops software-divide In modulo scheduled loops software-divide
code can be pipelined, interleaving multiple code can be pipelined, interleaving multiple
iterationsiterations
Divides are expanded if divide does not Divides are expanded if divide does not
appear in a recurrence (cyclic data-appear in a recurrence (cyclic data-
dependence)dependence)

© Copyright IBM Corp. 2005

SummarySummary

Software divide algorithmsSoftware divide algorithms
ƒ user callableuser callable
ƒ compiler generatedcompiler generated

Loops of dividesLoops of divides
ƒ up to 1.77x speedupup to 1.77x speedup

UMT2K benchmarkUMT2K benchmark
ƒ 1.19x speedup1.19x speedup

