Speeding Up Floating-
Point Division With In-
lined Iterative Algorithms

Robert Enenkel, Allan Martin
IBMe Toronto Lab

Outline

"Hardware floating-point division
"The case for software division
"Software division algorithms
"Special cases/tradeotts
"Performance results

"Automatic generation

© Copyright IBM Corp. 2005

Hardware Division

"PPC fdiv, fdivs

"Advantages
f accurate (correctly rounded)
f handles exceptional cases (Inf, NaN)
f lower latency than SW
"Disadvantages

f occupies FPU completely
f inhibits parallelism

© Copyright IBM Corp. 2005

Alternatives to HW division

"Vector libraries
f MASS
f higher overhead, greater speedup

"In-lined software division
f low overhead, medium speedup

© Copyright IBM Corp. 2005

Rationale for Software Division

"Write SW division algorithm in terms of
HW arithmetic instructions

f Newton's method or Taylor series
"Latency will be higher than HW division

"But...SW instructions can be interleaved, so
throughput may be better

"Requires enough independent instructions
to interleave
f loop of divisions
f other work © Copyright IBM Corp. 2005

Newton's Method

"To find x such that £(x) = 0,

"Initial guess xo
"Xn+1 = Xn - f(Xn)/1'(xn), n=0, 1, 2....
"Provided xo is close enough

f xn converges to x

f It converges quadratically |Xn+1-X| < ¢[Xn-X|"2

f Number of bits of accuracy doubles with each
iteration

© Copyright IBM Corp. 2005

Newton's Method

I

© Copyright IBM Corp. 2005

Newton Iteration for Division

"For 1/b, let f(x) =1/x-b
"For a/b, use a*(1/b) or f(x) =a/x-b
"Algorithm for 1/b

f xo0 ~1/b initial guess

fe=1- b*yo
f x1=xo0+ eo*xo
f e1=eo*eo

[x2=x1+ e1*x1
f etc...

© Copyright IBM Corp. 2005

How Many Iterations Needed?

"Powers3 reciprocal estimate instructions
f FRES (single precision), FRE (double prec.)
f |relative error| <=2/(-8)
"Floating-point precision
f single:24 bits
f double: 53 bits
"Newton iterations
f error: 24(-16), 24(-32), 2(-64), 2°(-128)
f single: 2 iterations for 1 ulp

f double: 3 iterations for 1 ulp
f +1 iteration for correct roundif (0.5 uiiys)"”

Taylor Series tor Reciprocal

"x0 ~ 1/b initial guess
"e=1-b xo
"1/b = xo/(b x0) = xo0 (1/(1-¢))
=x0(1+et+e”2+e”3+e4+...)
"Algorithm (6 terms)
fe=1-d*xo
fti=05+e*e
fq=x0+x0%e
f t2=0.75 + t1*ta
f ts=qi%e

f Jz2 = Xo + t2*t3 © Copyright IBM Corp. 2005

Speed/Accuracy tradeott

"IBM compilers have -qstrict/-qnostrict

"_gstrict: SW result should match HW
division exactly

"_gnostrict: SW result may be slightly less
accurate for speed

© Copyright IBM Corp. 2005

Exceptions

"Even when a/b is representable...

"1/b may underflow
f a~b ~huge, a/b ~ 1, 1/b denormalized
f Causes loss of accuracy
"1/b may overtlow
f a, b denormalized, a/b ~ 1, 1/b = Inf
f Causes SW algorithm to produce NaN
"Handle with tests in algorithm

f Use HW divide for exceptional cases
© Copyright IBM Corp. 2005

Algorithm variations

"User callable built-in functions
f swdiv(a,b): double precision, checking
f swdivs(a,b): single precision, checking
f swdiv_nochk(a,b): double, non-checking
f swdivs nochk(a,b): single, non-checking
"Accuracy of swdiv, swdiv_nochk depends on
-gstrict/-qnostrict

" nochk versions faster but have argument

restrictions
© Copyright IBM Corp. 2005

Accuracy and Performance

swdivs

swdivs nochk
swdiv strict
swdiv nostrict

swdiv_nochk
strict

swdiv_nochk
nostrict

Power5

speedup ratio
1.07
1.46
1.05
1.50

1.51

1.77

Power4

Powers

Power4

speedup ratio ulps max error ulps max error

1.05

1.28

0.5

0.5

0.5

1.5

0.5

1.5

0.5

0.5

© Copyright IBM Corp. 2005

Automatic Generation of
Software Division

"The swdivs and swdiv algorithms can also
be automatically generated by the compiler

"Compiler can detect situations where
throughput is more important than latency

© Copyright IBM Corp. 2005

Automatic Generation of
Software Division

"In straight-line code, we use a heuristic that
calculates how much FP can be executed in
parallel

f independent instructions are good, especially
other divides

f dependent instructions are bad (they increase
latency)

© Copyright IBM Corp. 2005

Automatic Generation of
Software Division

"In modulo scheduled loops software-divide
code can be pipelined, interleaving multiple
iterations

"Divides are expanded if divide does not
appear in a recurrence (cyclic data-
dependence)

© Copyright IBM Corp. 2005

Summary

"Software divide algorithms
f user callable
f compiler generated

"Loops of divides
f up to 1.77x speedup

"UMT2K benchmark
f 1.19x speedup

© Copyright IBM Corp. 2005

