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Pointers Impede OptimizationPointers Impede Optimization

Many optimizations come to a halt when 
they encounter an ambiguous pointer

foo(int *a) {
…
while(…)
{

x = *a; 
…

}
} 

Loop Invariant
Code Motion

Parallelize 

Pointer Analysis is Important
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Pointer AnalysisPointer Analysis

Do pointers a and b point to the same location?
Do this for every pair of pointers at every program point

*a = ~
~ = *b

*a = ~ ~ = *b

Definitely Not

Definitely

Maybe

Pointer
Analysis

optimize
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Pointer analysisPointer analysis is a difficult problem
scalablescalable and overly conservativeoverly conservative

failsfails--toto--scalescale and accurateaccurate

Ambiguous pointers will persist
even when using the most accurate accurate of algorithms

output is often unavoidable

What can be done with              ?

Pointer Analysis is DifficultPointer Analysis is Difficult

Maybe

Maybe

oror
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Lets SpeculateLets Speculate

Compilers make conservativeconservative assumptions
They must alwaysalways preserve program correctness

“It's easier to apologize than ask for permission.”
Author: Anonymous

Implement a potentially unsafeunsafe optimization
VerifyVerify and RecoverRecover if necessary
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Speculation applied to PointersSpeculation applied to Pointers

int *a, x;
…
while(…)
{

x = *a; 
…

} 

a is probably 
loop invariant

int *a, x, tmp;
…
tmp = *a;
while(…)
{

x = tmp; 
…

} 
<verify, recover?><verify, recover?>
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Data Speculative OptimizationsData Speculative Optimizations
The EPIC Instruction set

Explicit support for speculative load/store instructions (eg. Itanium)

Speculative compiler transformations
Dead store elimination, redundancy elimination, copy propagation, 
strength reduction, register promotion

Thread-level speculation (TLS) 
Hardware support for tracking speculative parallel threads

Transactional programming
Rollback support for aborted transactions 

When to speculate? Techniques rely on profiling
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Quantitative              Output RequiredQuantitative              Output Required

Estimate the potential benefit for speculating:

SPECULATE?

ExpectedExpected
speedupspeedup
(if successful)(if successful)

RecoveryRecovery
penaltypenalty

(if unsuccessful)(if unsuccessful)
OverheadOverhead
for verifyfor verify

Probabilistic                output neededMaybe

Maybe

Maybe

ProbabilityProbability
of successof success
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Conventional Pointer AnalysisConventional Pointer Analysis

Do pointers a and b point to the same location?
Do this for every pair of pointers at every program point

*a = ~
~ = *b

*a = ~ ~ = *b

Definitely Not

Definitely

Maybe

Pointer
Analysis

optimizeoptimize
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*a = ~
~ = *b

*a = ~ ~ = *b

optimize

Probabilistic Pointer Analysis Probabilistic Pointer Analysis (PPA)(PPA)

PPA
pp = 0.0
pp = 1.0

0.0 < pp < 1.0

With what probability pp, do pointers a and b point 
to the same location?

Do this for every pair of pointers at every program point 

optimize
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PPA Research ObjectivesPPA Research Objectives
Accurate points-to probability information

at every static pointer dereference

Scalable analysis 
Goal: The entire SPEC integer benchmark suite

Understand scalabilityscalability/accuracyaccuracy tradeoff
through flexible static memory model

Improve our understanding of programs
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Algorithm Design ChoicesAlgorithm Design Choices
FixedFixed

Bottom Up / Top Down Approach
LinearLinear transfer functions (for scalability)

One-level contextcontext and flowflow sensitive
FlexibleFlexible

Edge profiling (or static prediction)

Safe (or unsafe)

Field sensitive (or field insensitive)
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Traditional PointsTraditional Points--To GraphTo Graph
int x, y, z, *b = &x;
void foo(int *a) {

if(…) 
b = &y;

if(…)
a = &z;

else(…)  
a = b; 

while(…) {
x = *a;
…

}
} 

y UND

a

z

b

x

= pointer

= pointed at

Definitely

Maybe

=

=

Results are inconclusive 
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Probabilistic PointsProbabilistic Points--To GraphTo Graph
int x, y, z, *b = &x;
void foo(int *a) {

if(…) 
b = &y;

if(…)
a = &z;

else(…)  
a = b; 

while(…) {
x = *a;
…

}
} 

y UND

a

z

b

x

0.10.1 takentaken((edgeedge profileprofile))

0.20.2 takentaken((edgeedge profileprofile))

= pointer

= pointed at

p = 1.0

0.0<p< 1.0

=

=p

0.10.9
0.72

0.08

0.2

Results provide more information
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LOLLOLLLIPIPOOPP
Our PPA AlgorithmOur PPA Algorithm

LLinear inear 
OOne ne --
LLevel evel 
IInterprocedural nterprocedural 
PProbabilistic robabilistic 
PPointer Analysisointer Analysis
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PointsPoints--To MatrixTo Matrix

Location Sets

Area
Of

Interest

I

1

2

…

N-1

N

…

M-1 M

All matrix rows sum to 1.0

Location Sets

Pointer Sets
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PointsPoints--To Matrix ExampleTo Matrix Example

y UNDzx

y

UND

z

x

a

b

0.72  0.08  0.20 
0.90  0.10

1.0

1.0

1.0 

1.0

Iy UND

a

z

b

x

0.10.9
0.72

0.08

0.2
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Solving for a PointsSolving for a Points--To MatrixTo Matrix

I
Any InstructionAny Instruction

I

Points-To
Matrix In

Points-To
Matrix Out
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The Fundamental PPA EquationThe Fundamental PPA Equation

Points-To
Matrix Out

Points-To
Matrix In

Transformation
Matrix=

This can be applied to any instruction (incl. function calls)
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Transformation MatrixTransformation Matrix

1

2

N-1 N

ø I

1 2 3 …

…

N-1

N

…

Area of Interest

Location SetsPointer Sets

All matrix rows sum to 1.0

Location Sets

Pointer Sets
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Transformation Matrix ExampleTransformation Matrix Example

y

UND

z

x

a

b

y UNDzxa b

1.0 

1.0

1.0

1.0 

1.0

1.0 

S1:S1: a = &z;a = &z;

=TS1
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1.0

1.0

1.0 

1.0

1.0 
1.0

Example Example -- The PPA EquationThe PPA Equation
S1:S1: a = &z;a = &z;PTout = TS1 PTin

0.72  0.08  0.20 
0.90  0.10

1.0

1.0

1.0 

1.0

=PTout
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Example Example -- The PPA EquationThe PPA Equation

y UNDzx

y

UND

z

x

a

b

1.0 
0.90  0.10

1.0

1.0

1.0 

1.0

y UNDz

b

x

0.10.9

a

S1:S1: a = &z;a = &z;PTout = TS1 PTin

=PTout



24University Of Toronto

Combining Transformation MatricesCombining Transformation Matrices

I
Basic Block

S1: S1: InstrInstr

S2: S2: InstrInstr

S3: S3: InstrInstr

I

PTout TS1=

PTin

TS3 PTin

PTout = TBB

TS1
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Control flow Control flow -- if/elseif/else

YYXX

TX TY= +

p q

p q

p + q = 1.0
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Control flow Control flow -- loopsloops

TX=XX
N N

∑
=

U

Li
TY=

1
U-L+1

i
<L,U>

YY

Both operations can be implemented efficiently

<L,U> <min,max>
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Safe vs. Unsafe Safe vs. Unsafe 
Pointer Assignment InstructionsPointer Assignment Instructions

Store Assignment*x = y

Load Assignmentx = *y

Copy Assignmentx =  y

Address-of Assignmentx = &y
Safe?



28University Of Toronto

LOLLOLLLIPIPOOPP ImplementationImplementation

.spd

Edge
Profile

Results

SUIF Infrastructure

Static 
Memory 

Model

MATLAB
C Library

TF-Matrix 
Collector

Points-To
Matrix

Propagator Stats

ICFGICFG SMMSMM BUBU TDTD .spx
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MeasuringMeasuring
LOLLOLLLIPIPOOPP’’s s 

EfficiencyEfficiency and and AccuracyAccuracy
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SPEC2000 Benchmark DataSPEC2000 Benchmark Data

Experimental Framework: 3GHz P4 with 2GB of RAM

PPA Analysis Time

[Safe]
PPA Analysis Time

[Unsafe]
Matrix 
Size N

LOCBenchmark

30.72 seconds273211402Parser

16.59 seconds261120469Twolf

9.33 seconds197617750Vpr

5.49 seconds191721297Crafty

0.71 seconds5638616Gzip

0.39 seconds3542429Mcf

0.3 seconds2514686Bzip2

50.04 seconds
20.64 seconds
10.34 seconds
5.51 seconds
0.77 seconds
0.61 seconds
0.3 seconds

5hour 10 min4210922225Gcc

44min 15seconds2092285221Perlbmk

54min 56seconds2588271766Gap

3min 59seconds1101867225Vortex

Still Running…
89min 43seconds
83min 38seconds
4min 56seconds

Scales to all of SPECint
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Comparison with Comparison with DasDas’’ss GOLFGOLF

YesNoProbabilistic

YesYesSafe

> 5 hours< 10 secondsAnalysis Time on GCC

ProfiledSolvedIndirect Calls

Modeled SomeModeled AllLibrary Calls

Callsite AllocCallsite AllocHeap Model

Turned OffNoField Sensitive 

YesNoFlow Sensitive

One-levelOne-levelContext Sensitive

LOLLIPOPGOLF



32University Of Toronto

Comparison with DasComparison with Das’’s GOLFs GOLF
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LOLLIPOP is very AccurateAccurate (even without probability information)
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Easy SPEC2000 BenchmarksEasy SPEC2000 Benchmarks

1.4
1.2

1.5
1.8
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A one-level Analysis is often adequate (i.e. safe=unsafe)
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Challenging SPEC 95/2000 BenchmarksChallenging SPEC 95/2000 Benchmarks
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Many improbable points-to relations can be pruned away
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Metric: Average Certainty Metric: Average Certainty 

while(…)
{

x = *a; 
…

} 

{ (0.72,     ), (0.08,     ), (0.2,     ) }y zx

Σ(max probability value)

(num of loads & stores)
Avg Certainty =

Max probability value = 0.72
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SPEC2000 Average CertaintySPEC2000 Average Certainty
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On average, LOLLIPOP can predict a single likely points-to relation
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Conclusions and Future WorkConclusions and Future Work

LOLLOLLLIPIPOOPP
A novel PPA algorithm
Scales to SPECint 95/2000
As accurate as the most precise algorithms

Future Ongoing WorkFuture Ongoing Work
Measure the probabilistic accuracy
Optimize LOLLIPOP’s implementation
Apply PPA

Provides the key puzzle piece for a speculation compiler
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