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Pointers Impede Optimization

m Many optimizations come to a halt when
they encounter an ambiguous pointer

foo(int *a) {

while(...)
{
X = *a;

}
}
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Pointer Analysis

= @
~=%*p

Pointer Definitely 1l
% Analysis Definitely Not |
| ul Maybe

*a:~ ~—*b

m Do pointers a and b point to the same location?

Do this for every pair of pointers at every program point
&
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Pointer Analysis is Difficult

m Pointer analysis is a difficult problem

and
flor

and

m Ambiguous pointers will persist
even when using the most of algorithms
Maybe |Outputis often unavoidable

m \What can be done with | mMaybe |?

&
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Lets Speculate

m Compilers make conservative assumptions
They must always preserve program correctness

‘It's easler to apologize than ask for permission.”

Author: Anonymous

Implement a potentially unsafe optimization
Verify and Recover if necessary

o
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Speculation applied to Pointers

Int *a, X;

while(...)
{
X =*a;

a is probably
loop invariant

y

o
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Int *a, X, tmp;

tmp = *a;
while(...)
{

X = tmp;
}._

<verify, recover?>
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Data Speculative Optimizations

m The EPIC Instruction set
Explicit support for speculative load/store instructions (eg. Itanium)

m Speculative compiler transformations

Dead store elimination, redundancy elimination, copy propagation,
strength reduction, register promotion

m Thread-level speculation (TLS)
Hardware support for tracking speculative parallel threads

m Transactional programming
Rollback support for aborted transactions

F"When to speculate? Techniques rely on profiling

&
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Quantitative | Maybe

Output Required

m Estimate the potential benefit for speculating:

4
L Recovery ) ] Maybe «@

penalty || Overhead | .
if unsuccessful), [ for verify Probabi |ty
k01‘ SUCCeSS

(Expected\
Speedup

\(if successful) D

SPECULATE?
gd e

« F Probabilistic | Maybe |output needed
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Conventional Pointer Analysi

S

= @
~=%*p

Pointer Definitely

% Analysis Definitely Not
| ul Maybe

*a =~ ~=*p

N

\\ /e

m Do pointers a and b point to the same location?

Do this for every pair of pointers at every program point

$;
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Probabilistic Pointer Analysis (PPA)

= @
~ = *p

PPA ——

% | =~ 00<p<1.0

= With what probability p, do pointers a and b point
to the same location?

Do this for every pair of pointers at every program point
&fg
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PPA Research Objectives

m Accurate points-to probability information
at every static pointer dereference

m Scalable analysis
Goal: The entire SPEC integer benchmark suite

m Understand / tradeoff
through flexible static memory model

m Improve our understanding of programs

$
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Algorithm Design Choices

&
¢

~Ixed
i Bottom Up / Top Down Approach
I Linear transfer functions (for scalability)

i One-level context and flow sensitive
~lexible

a Edge profiling (or static prediction)

aSafe (or unsafe)

a Field sensitive (or field insensitive)

w University Of Toronto
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Traditional Points-To Graph

INt X, y, z, *b = &X;
void foo(int *a) ¢

if(...)
b = &y;

If(...)
a= &z
else(...)
a=Db;
>
while(...) {
X =*a,

}
}

i?';
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Probabilistic Points-To Graph

INt X, y, z, *b = &X;
void foo(int *a) ¢

if(...) ( )
b = &y;

If(...) ( )
a= &z

else(...)
a=Db;

>

while(...) {
X =*a,

y

i?';
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Linear

One -

Level
Interprocedural
Probabilistic
Pointer Analysis

LOLLIPOP
Our PPA Algorithm

o
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W
Points-To Matrix

Pointer Sets <

Location Sets <

F All matrix rows sum to 1.0

r@ University Of Toronto
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Points-To Matrix Example

X ||yl z UND‘

@@2 0.08 0.20 \
@ @ @ 0.90 0.10
072,”‘

09 '-..,:0-1 ““““ <30.2

= [v] [z] 9 : T

®
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Solving for a Points-To Matrix

I:II:II:II:L
Points-To ¢
Matrix In J I/
— 1l

Any Instruction

Dl:lﬁlilq
Points-To  C
Matrix Out £ T
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The Fundamental PPA Equation

4 )

Points-To
Matrix Out

- _/

a4 I
Transformation
Matrix
\_ _/

4 )

Points-To
Matrix In

- _/

%" This can be applied to any instruction (incl. function calls)

®
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Transformation Matrix

Pointer Sets <

Location Sets —

N
—

N-1

N

AN

e

123

Pointer Sets

Location Sets

N-1 N

Area of Interest

=

7/

I

S~—_

F All matrix rows sum to 1.0
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Transformation Matrix Example

s1: a = &Z;
r B
- Sl Y

@ x ||y ||z |lND
;a‘) 1.0 \
1.0

1.0
1.0

1.0
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Example - The PPA Equation

[PTOUJ = Tey JPTi

-

- N
I:)Tout -
- y

AN

1.0
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s1: a = &Z;
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Example - The PPA Equation

ENEEMCAN

x ||y || z |lunD)

e N
(a) 1.0 09@1 @

@ 0.90 0.10
r )
I:)Tout - 3 Y
9 ) y 1.0 X y UND
Z 1.0
UND

N Y
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Combining Transformation Matrices

out

ol

CIOCEa

a ﬂ } s

ﬂBasic Block \ PT

S1: Instr

\.
S2: Instr
S3: Instr

o
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Control flow - iIf/else

.....................................................................................

?
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Control flow - loops

S
X
Z
|
A\
_I
X
J
Z

. F~Both operations can be implemented efficiently
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Safe vs. Unsafe
Pointer Assignment Instructions

X =&y |Address-of Assignment
X =Yy |Copy Assignment
X =*y |Load Assignment
*x =y |Store Assignment

&
¢
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f/%/@LOLLIPOP Implementation

spd =1SUIF Infrastructure
o TCFE |SMM | BU | | TD | | «
—> Static =) TF-Matrix = Points-To —>results
Memory Collector Matrix
Model Propagator Stats
il il
V. V.
MATLAB
C Library

&
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. Measuring

LOLLIPOP S

Efficiency and Accuracy



JE
SPEC2000 Benchmark Data

Benchmark LOC Matrix PPA Analysis Time PPA Analysis Time
Size N [Unsafe] [Safe]
Bzip2 4686 251 0.3 seconds 0.3 seconds
Mcf 2429 354 0.39 seconds 0.61 seconds
Gzip 8616 563 0.71 seconds 0.77 seconds
Crafty 21297 1917 5.49 seconds 5.51 seconds
Vpr 17750 1976 9.33 seconds 10.34 seconds
Twolf 20469 2611 16.59 seconds 20.64 seconds
Parser 11402 2732 30.72 seconds 50.04 seconds
Vortex 67225 11018 3min 59seconds 4min 56seconds
Gap 71766 25882 54min 56seconds 83min 38seconds
Perlbmk 85221 20922 44min 15seconds 89min 43seconds
Gcc 22225 42109 Shour 10 min Still Running...@

Experimental Framework: 3GHz P4 with 2GB of RAM
F"Scales to all of SPECint

&

W University Of Toronto

30



Comparison with Das’'s GOLF

GOLF LOLLIPoP /ﬁ
Probabilistic No Yes
Context Sensitive One-level One-level
Flow Sensitive No Yes
Field Sensitive No Turned Off
Indirect Calls Solved Profiled
Library Calls Modeled All Modeled Some
Heap Model Callsite Alloc Callsite Alloc
Safe Yes Yes
Analysis Time on GCC < 10 seconds > 5 hours

&
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Comparison with Das’'s GOLF

more accurate
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185.6
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more accurate

Easy SPEC2000 Benchmarks

—

Average Dereference Size

¥ A one-level Analysis is often adequate (i.e. safezunsafe)

14
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i
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W unsafe
O safe
Op>0.001

gzip

vpr

mcf

crafty vortex

bzip2

twolf
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Challenging SPEC 95/2000 Benchmarks

more accurate

143.8
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g@:Many improbable points-to relations can be pruned away
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Metric: Average Certainty

Wh”e(---) Max probability value = 0.72

{
X=*a, —> { (0.08, Y ]), (0.2,

) /4

Z(max probability value)

Avg Certainty =

(num of loads & stores)

o
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SPEC2000 Average Certainty

1- 0.949 0.970 0046 0969 1.000
0.905 0.920 0.908 0.901
0.9 1 0.870
Py
c | os] 0.783
@®
/\% 0.7 -
% Q) | 06-
= O | o5
e
§ ‘_£ 0.4 -
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‘@:On average, LOLLIPOP can predict a single likely points-to relation
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Conclusions and Future Work

a LOLLIPOP/”
A novel PPA algorithm
Scales to SPECint 95/2000
As accurate as the most precise algorithms
m Eutare Ongoing Work
Measure the probabllistic accuracy
Optimize LOLLIPoP’s implementation

Apply PPA
@;Provides the key puzzle piece for a speculation compiler
w University Of Toronto
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