K575 fff./‘ﬂ A
J.jd’ £

| /O |
EIeCical anErCompULer IBWIEEHnG

Urli/arsity of Toropnjic

Torornio, ON. Carjeelz
Qct 170 2005

C
ry

Pointers Impede Optimization

m Many optimizations come to a halt when
they encounter an ambiguous pointer

foo(int *a) {

while(...)
{
X = *a;

}
}

o

W University Of Toronto

—>

s

\.

Loop Invariant
Code Motion

\

J

s

\.

Parallelize

\

J

!

9,

e

FPointer Analysis is Important

2

Pointer Analysis

= @
~=%*p

Pointer Definitely 1l
% Analysis Definitely Not |
| ul Maybe

*a:~ ~—*b

m Do pointers a and b point to the same location?

Do this for every pair of pointers at every program point
&

W University Of Toronto

=
Pointer Analysis is Difficult

m Pointer analysis is a difficult problem

and
flor

and

m Ambiguous pointers will persist
even when using the most of algorithms
Maybe |Outputis often unavoidable

m \What can be done with | mMaybe |?

&

W University Of Toronto 4

"
Lets Speculate

m Compilers make conservative assumptions
They must always preserve program correctness

‘It's easler to apologize than ask for permission.”

Author: Anonymous

Implement a potentially unsafe optimization
Verify and Recover if necessary

o

W University Of Toronto S

"
Speculation applied to Pointers

Int *a, X;

while(...)
{
X =*a;

a is probably
loop invariant

y

o

W University Of Toronto

Int *a, X, tmp;

tmp = *a;
while(...)
{

X = tmp;
}._

<verify, recover?>

JE
Data Speculative Optimizations

m The EPIC Instruction set
Explicit support for speculative load/store instructions (eg. Itanium)

m Speculative compiler transformations

Dead store elimination, redundancy elimination, copy propagation,
strength reduction, register promotion

m Thread-level speculation (TLS)
Hardware support for tracking speculative parallel threads

m Transactional programming
Rollback support for aborted transactions

F"When to speculate? Techniques rely on profiling

&
¢

w University Of Toronto 7

Quantitative | Maybe

Output Required

m Estimate the potential benefit for speculating:

4
L Recovery)] Maybe «@

penalty || Overhead | .
if unsuccessful), [for verify Probabi |ty
k01‘ SUCCeSS

(Expected\
Speedup

\(if successful) D

SPECULATE?
gd e

« F Probabilistic | Maybe |output needed

W University Of Toronto

JE
Conventional Pointer Analysi

S

= @
~=%*p

Pointer Definitely

% Analysis Definitely Not
| ul Maybe

*a =~ ~=*p

N

\\ /e

m Do pointers a and b point to the same location?

Do this for every pair of pointers at every program point

$;

W University Of Toronto

"
Probabilistic Pointer Analysis (PPA)

= @
~ = *p

PPA ——

% | =~ 00<p<1.0

= With what probability p, do pointers a and b point
to the same location?

Do this for every pair of pointers at every program point
&fg

w University Of Toronto 10

JE
PPA Research Objectives

m Accurate points-to probability information
at every static pointer dereference

m Scalable analysis
Goal: The entire SPEC integer benchmark suite

m Understand / tradeoff
through flexible static memory model

m Improve our understanding of programs

$

w University Of Toronto

11

JE
Algorithm Design Choices

&
¢

~Ixed
i Bottom Up / Top Down Approach
I Linear transfer functions (for scalability)

i One-level context and flow sensitive
~lexible

a Edge profiling (or static prediction)

aSafe (or unsafe)

a Field sensitive (or field insensitive)

w University Of Toronto

12

" S
Traditional Points-To Graph

INt X, y, z, *b = &X;
void foo(int *a) ¢

if(...)
b = &y;

If(...)
a= &z
else(...)
a=Db;
>
while(...) {
X =*a,

}
}

i?';

W University Of Toronto

O = pointer

= pointed at

i
.
ot

ot
.
.
.
.
.
.
.
.
.
.
.
K
.
.

o
.
.
.
.
.

o
K
.
.
. S
.

. .

.

.
.
.
.
.
o
.

\: Definitely
v
Z UND

F~ Results are inconclusive

13

Probabilistic Points-To Graph

INt X, y, z, *b = &X;
void foo(int *a) ¢

if(...) ()
b = &y;

If(...) ()
a= &z

else(...)
a=Db;

>

while(...) {
X =*a,

y

i?';

W University Of Toronto

O = pointer

= pointed at

~.p

ONO

A -
.
.
ol
. * 0. H
o :
.
o Bl
0’ -
:
2
:

0.9-7:0.1

.
ot
.
S
.
.
.
.
.
.
.
.
o
.

)
.
K

ot
.
.
.
.
.
.
.
.
.
.
.
K
.
.

\:

0.0<p< 1.0

.08 %

UND

F~Results provide more information

14

Linear

One -

Level
Interprocedural
Probabilistic
Pointer Analysis

LOLLIPOP
Our PPA Algorithm

o

@ University Of Toronto

15

W
Points-To Matrix

Pointer Sets <

Location Sets <

F All matrix rows sum to 1.0

r@ University Of Toronto

o

i

N-1

Location Sets
M-1 M

/

_

Area
Of
Interest

I

\

_/

16

" J
Points-To Matrix Example

X ||yl z UND‘

@@2 0.08 0.20 \
@ @ @ 0.90 0.10
072,”‘

09 '-..,:0-1 ““““ <30.2

= [v] [z] 9 : T

®

w University Of Toronto 17

Solving for a Points-To Matrix

I:II:II:II:L
Points-To ¢
Matrix In J I/
— 1l

Any Instruction

Dl:lﬁlilq
Points-To C
Matrix Out £ T

w University Of Toronto

—/

The Fundamental PPA Equation

4)

Points-To
Matrix Out

- _/

a4 I
Transformation
Matrix
_ _/

4)

Points-To
Matrix In

- _/

%" This can be applied to any instruction (incl. function calls)

®

@ University Of Toronto

19

o
Transformation Matrix

Pointer Sets <

Location Sets —

N
—

N-1

N

AN

e

123

Pointer Sets

Location Sets

N-1 N

Area of Interest

=

7/

I

S~—_

F All matrix rows sum to 1.0

o

W University Of Toronto

Transformation Matrix Example

s1: a = &Z;
r B
- Sl Y

@ x ||y ||z |lND
;a‘) 1.0 \
1.0

1.0
1.0

1.0

21

Example - The PPA Equation

[PTOUJ = Tey JPTi

-

- N
I:)Tout -
- y

AN

1.0

W University Of Toronto

1.0

1.0

1.0

1.0

s1: a = &Z;

0.90 0.10

1.0
1.0

-

1.0

\@2 0.08 0.20 \

&

22

" J
Example - The PPA Equation

ENEEMCAN

x ||y || z |lunD)

e N
(a) 1.0 09@1 @

@ 0.90 0.10
r)
I:)Tout - 3 Y
9) y 1.0 X y UND
Z 1.0
UND

N Y

W University Of Toronto 23

Combining Transformation Matrices

out

ol

CIOCEa

a ﬂ } s

ﬂBasic Block \ PT

S1: Instr

\.
S2: Instr
S3: Instr

o

W University Of Toronto

PT

24

:

JE
Control flow - iIf/else

...

?

W University Of Toronto 25

JE
Control flow - loops

S
X
Z
|
A\
_I
X
J
Z

. F~Both operations can be implemented efficiently

W University Of Toronto 26

0
Safe vs. Unsafe
Pointer Assignment Instructions

X =&y |Address-of Assignment
X =Yy |Copy Assignment
X =*y |Load Assignment
*x =y |Store Assignment

&
¢

w University Of Toronto

Safe?

1
—

2
2

XN KN

27

- /—
f/%/@LOLLIPOP Implementation

spd =1SUIF Infrastructure
o TCFE |SMM | BU | | TD | | «
—> Static =) TF-Matrix = Points-To —>results
Memory Collector Matrix
Model Propagator Stats
il il
V. V.
MATLAB
C Library

&

W University Of Toronto 28

. Measuring

LOLLIPOP S

Efficiency and Accuracy

JE
SPEC2000 Benchmark Data

Benchmark LOC Matrix PPA Analysis Time PPA Analysis Time
Size N [Unsafe] [Safe]
Bzip2 4686 251 0.3 seconds 0.3 seconds
Mcf 2429 354 0.39 seconds 0.61 seconds
Gzip 8616 563 0.71 seconds 0.77 seconds
Crafty 21297 1917 5.49 seconds 5.51 seconds
Vpr 17750 1976 9.33 seconds 10.34 seconds
Twolf 20469 2611 16.59 seconds 20.64 seconds
Parser 11402 2732 30.72 seconds 50.04 seconds
Vortex 67225 11018 3min 59seconds 4min 56seconds
Gap 71766 25882 54min 56seconds 83min 38seconds
Perlbmk 85221 20922 44min 15seconds 89min 43seconds
Gcc 22225 42109 Shour 10 min Still Running...@

Experimental Framework: 3GHz P4 with 2GB of RAM
F"Scales to all of SPECint

&

W University Of Toronto

30

Comparison with Das’'s GOLF

GOLF LOLLIPoP /ﬁ
Probabilistic No Yes
Context Sensitive One-level One-level
Flow Sensitive No Yes
Field Sensitive No Turned Off
Indirect Calls Solved Profiled
Library Calls Modeled All Modeled Some
Heap Model Callsite Alloc Callsite Alloc
Safe Yes Yes
Analysis Time on GCC < 10 seconds > 5 hours

&

W University Of Toronto

31

"

Comparison with Das’'s GOLF

more accurate

100

185.6

90 -

80 -

70

60

50

40 -

30 -

20

—

Average Dereference Size

10 -

B GOLF
M LOLLIPOP

32

more accurate

Easy SPEC2000 Benchmarks

—

Average Dereference Size

¥ A one-level Analysis is often adequate (i.e. safezunsafe)

14

i

i

1.2

15

1.8

6.1

1.0

1.3

W unsafe
O safe
Op>0.001

gzip

vpr

mcf

crafty vortex

bzip2

twolf

r@ﬁ University Of Toronto

33

"

Challenging SPEC 95/2000 Benchmarks

more accurate

143.8

@
N | 140
V)
(D) |
Q120
1 C
D | 100 -
O
Y
Q| g
O
()
q) 607
<
© | 40
O
>
< 20
O,
parser

perlbmk

gap

80.1

18.5

B unsafe
O safe
Op>0.001

6.7

l ijpeg perl

g@:Many improbable points-to relations can be pruned away

34

JE
Metric: Average Certainty

Wh”e(---) Max probability value = 0.72

{
X=*a, —> { (0.08, Y]), (0.2,

) /4

Z(max probability value)

Avg Certainty =

(num of loads & stores)

o

W University Of Toronto

35

"
SPEC2000 Average Certainty

1- 0.949 0.970 0046 0969 1.000
0.905 0.920 0.908 0.901
0.9 1 0.870
Py
c | os] 0.783
@®
/\% 0.7 -
% Q) | 06-
= O | o5
e
§ ‘_£ 0.4 -
QL @) 0.3 -
s S
- 0.2 -
= o
E 01 -
0 1 \ \ \ \ \ \ \
‘ $ O & Q N & Q A % N\
R Q& ¢ Q & & KRGO
Q QQ’

‘@:On average, LOLLIPOP can predict a single likely points-to relation

mﬁa University Of Toronto a6

"
Conclusions and Future Work

a LOLLIPOP/”
A novel PPA algorithm
Scales to SPECint 95/2000
As accurate as the most precise algorithms
m Eutare Ongoing Work
Measure the probabllistic accuracy
Optimize LOLLIPoP’s implementation

Apply PPA
@;Provides the key puzzle piece for a speculation compiler
w University Of Toronto

37

JE
References

m Manuvir Das, Ben Liblit, Manuel Fahndrich, and Jakob Rehof. Estimating
the Impact of Scalable Pointer Analysis on Optimization. SAS 2001,
260-278.

m Peng-Sheng Chen, Ming-Yu Hung, Yuan-Shin Hwang, Roy Dz-Ching Ju,
and Jeng Kuen Lee. Compiler support for speculative multithreading
architecture with probabilistic points-to analysis. PPOPP 2003, 25-36.

m Jin Lin, Tong Chen, Wei-Chung Hsu, Peng-Chung Yew, Roy Dz-Ching Ju,
Tin-Fook Ngai and Sun Chan, A Compiler Framework for Speculative
Analysis and Optimizations. PLDI 2003, 289-299.

m R.D. Ju, J. Collard, and K. Oukbir. Probabilistic Memory Disambiguation
and its Application to Data Speculation. SIGARCH Comput. Archit. News
27 1999, 27-30.

m Manel Fernandez and Roger Espasa. Speculative Alias Analysis for
Executable Code. PACT 2002, 221-231.

&
¢

w University Of Toronto 38

