A Framework for Safe Automatic Data
Reorganization

Shimin Cui (Speaker), Yaoqing Gao, Roch Archambault, Raul Silvera
IBM Toronto Software Lab

Peng Peers Zhao, Jose Nelson Amaral
University of Alberta

work joint with Xipeng Shen and Chen Ding (University of Rochester

* Part of the

Contents

d The memory wall problem
4 Data reorganization framework
» Data reshape analysis

» Data reshape planning

d Performance evaluation

d Summary

The Memory Wall Problem

J Memory access latency is a “wall” to better performance

d Speed of memory continues to lag behind the speed of
processors.

J Memory hierarchy

» Limited cache size and bandwidth limitation

»> Efficient utilization of cache is crucial for performance
d Domain — applications and benchmarks with large data sets.

Compiler Approaches

J Tolerate memory latency through buffering and pipelining data
references.

» Data Prefetching
J Reduce memory latency through locality optimizations.

» Code transformations - modifying the actual algorithm by
reordering computations.

v" Loop fusion

v" Loop distribution
v Loop tiling/blocking
v' Loop interchange

» Data reorganizations - Placing data in memory according
to their access patterns.

Data Reorganization

J Data reorganization is a difficult problem.

» NP problem, heuristics are needed

» Safe, automatic techniques are necessary
d Data layout transformations

» Data splitting

> Fields reordering

» Data interleaving

» Data padding

» Data coalescing

> ...

it L]

Data Reorganization Framework

4 Inside TPO link time optimizations

Data Reshape Analyses

J Safety and legality issues
> Inter-procedural alias analysis
v" Pointer escape analysis
v" Global pointer analysis
» Data shape analysis
4 Profitability issues
» Data affinity analysis

Inter-procedural Alias Analysis

4 To ensure data reshaping correctness since compiler needs to
modify all the affected references when it reshapes a data
object and its aliases.

d Flow-insensitive alias analysis is sufficient for data reshaping
[Steensgaard].

4 Field sensitive alias analysis is necessary to trace and
distinguish the alias relationships among different fields.

f1

£2

Storage shape graph

Data Shape Analysis

J Reshaping on data that has incompatible type is unsafe and is
strictly avoided.

J Type compatibility analysis is integrated with the interprocedural
alias analysis.

» The interprocedural alias analysis keeps track of the type of
each alias set.

> The types of data in an alias set must be compatible in the
whole program for safe data reshaping.

d Compatibility rules are enforced to check the access patterns.
Two data types are compatible if

» Two intrinsic data types are compatible if their data lengths are identical.

» Two aggregated data structures are compatible if they have the same number of byte-level
fields and their corresponding fields have the same offset and length.

» Two arrays have compatible types if their element types are compatible, they have the
same dimensions and the strides of corresponding dimensions are also identical.

» Two pointers are of compatible types iff the data they point to have compatible types.

nghtwelght Data Affinity Analysis
(Joint Work With Xipeng Shen and Chen Ding)

J To measure how closely a group of data are accessed together
In @ program region.
d Model affinity based on access frequency:

» An access frequency vector AFV(A) is used for each data
to record all the access frequency in all the innermost loops
In the program.

» Unique data is identified based on alias analysis, and AFVs
of their aliases are merged.

» Two data have good affinity if their AFVs are similar:
affinity(A4,B) =1- Z [(f;(4) = £,(B)]/(0.0001 + Z(f(A) + £(B)))

N - # of innermost loops, f(A) — access frequency of A in i-th loop

» Construct and partition data affinity graph to obtain all
the affinity groups.

Data Reshaping Planning

J Based on the reshape analysis and affinity analysis, a plan
IS made how to reshape a data.

> Array splitting
» Data outlining
» Data allocation merging

» Data interleaving
> ...

Array Splitting

J Separate cold fields from hot fields to avoid bringing rarely
accessed data into the cache in order to increase cache
utilization.

> A structure array is split into several contiguous arrays.

> Fields are reordered based on affinity information for
large data structure.

d Target to aggregate arrays that have consistent compatible
access patterns.

4 Three approaches:
> Affinity-based splitting
» Frequency-based splitting
» Maximal data splitting

<

Array Splitting — Three Approaches

4 Original data structure

> hot (FO,F2, F3), affinity groups (F0, F3) (F2), (F1, F4)

4 Original array [4]

F20 F21 F22 F23

 Affinity-based splitting

F20|F21|F22|F23

d Frequency -based spllttln

d Maximal data splitting

F20|F21|F22|F23

rray Splitting - Static Arrays

Array Splitting — Single-Instantiated Dynamic Arrays

OT

Array Splitting — Multiple-Instantiated Dynamic Arrays

4 Runtime descriptor is introduced to handle the multiple instantiations.

Data Outlining

J Separate cold fields from hot fields to avoid bringing rarely
accessed data into the cache in order to increase cache
utilization.

4 Target to non-array data objects whose collection of hot
fields are smaller than the cache block size.

J The outlined fields must be cold.

J No need to worry about single/multiple object instantiations.

Sow
Data Outlining Approach

[Original linked list element:

4 Original linked list

F20 F21 F22

J Frequency-based outlining

F20 F21 F22

Data Allocation Merging

4 Flat multi-dimensional dynamic array into contiguous
memory space to achieve better reference locality.

d Target to multi-dimensional dynamic arrays with (almost)
rectangular shapes. Padding is needed for non-rectangular
shaped multi-dimensional dynamic arrays.

4 Facilitate loop locality transformation since indirect reference
is replaced by array indexed reference.

J Runtime descriptor is also introduced to handle the multiple
object instantiation cases.

Data Allocation Merging Approach

4 Original two dimensional dynamic array **A

BasePtr —»

Al0]

A[1]

Al2]

A3

J After data allocation merging *A’

BasePtr —

A[0][0]

A[0][1]

A[0][2]

A[0][3]

A[1][0]

Al]1]

Al1][2]

A[1][3]

A[2][0]

Al2][1]

Al2][2]

Al2][3]

A3][0]

A3][1]

A3][2]

A[3][3]

Data Allocation Merging — Dynamic Arrays

Comparison of Splitting Approaches

1.6

1.4

1.2

1 4

0.8 -

speedup

0.6 -

0.4 -

0.2 -

= Affinity-based splitting
B Frequency-based splitting
: ¥ maximal data splitting

0

art mcf tsp

(Measured on power4 1.1GHz, AlX5.2)

SPEC2000 Performance Improvement
With Data Reorganizations

Q.

speedu

2

1.8 -
1.6
1.4
1.2

1 A
0.8 -
0.6 -
0.4 -
0.2 -

0 -

1.81

art

1.32
1.17

mcf

1.24 1.24

CLTELG ammp*

B power4 (1.1GHz)

B power5(1.9GHz)

SPEC2000 Performance Improvements
With Data Reorganizations

150 -

runtime (seconds)

-

(=]

(=)
|

n
o
|

0 _
art mcf

equake ammp*

B power4 no-data-reorganization
B power5 no-data-reorganization

B power4 with-data-reorganizations
M power5 with-data-reorganizations

Effect of Data Reorganizations
Reduction on DL1 misses

30 7

6.3

% . DL1 miss rates (V) 6 DL1 misses (G)

54 953

art mcf equake ammp art mcf equake ammp

® no-data-reorganization

. !'yvuithjdateornization (Measured on power4 1.1GHz, AlX5.2)

Effect of Data Reorganizations
Reduction on DL2 misses

25 1.4

22
DL2 miss rates (%) 2 DL2 misses (G)

1.2

art mcf equake ammp art mcf equake ammp

® no-data-reorganization

. !-vvui’ghjdateornization (Measured on power4 1.1GHz, AlX5.2)

Summary

4 A practical framework that guarantees safe automatic data
reorganization.

> Implemented in IBM XL compiler
d Impressive performance improvements on benchmarks and
customer codes.

» Four SPEC2000 benchmarks improved significantly.
d Future work

> Improve the data shape analysis to capture more

complex data access pattern
» Pursue more data reorganization techniques

Backups

Data Interleaving

J Group data with high affinity and put them together in
memory

J Reduce the number of hardware streams and also reduce
the cache conflicts

 Target to data in a program region with too many streams.

double a[1000j; struct {

double b[1000]; double x;
double v;
} ab[1000];

for (i=0; i<N; i++) { for (i=0; i<N; i++) {
.=all] ...; ... =abfi].x...;

=[] .. .= abily ...
} }

Data Padding and Alignment

d Array splitting
> Inter array padding can be added between those new
arrays for alignment (e.g., to ensure SIMD alignment), to
avoid false sharing.
J Memory allocation merging
> Intra array padding can be incorporated easily into the
framework to avoid cache conflicts

