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The Memory Wall Problem

J Memory access latency is a “wall” to better performance

d Speed of memory continues to lag behind the speed of
processors.

J Memory hierarchy

» Limited cache size and bandwidth limitation

»> Efficient utilization of cache is crucial for performance
d Domain — applications and benchmarks with large data sets.




Compiler Approaches

J Tolerate memory latency through buffering and pipelining data
references.

» Data Prefetching
J Reduce memory latency through locality optimizations.

» Code transformations - modifying the actual algorithm by
reordering computations.

v" Loop fusion

v" Loop distribution
v Loop tiling/blocking
v' Loop interchange

» Data reorganizations - Placing data in memory according
to their access patterns.




Data Reorganization

J Data reorganization is a difficult problem.

» NP problem, heuristics are needed

» Safe, automatic techniques are necessary
d Data layout transformations

» Data splitting

> Fields reordering

» Data interleaving

» Data padding

» Data coalescing

> ...
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Data Reorganization Framework

4 Inside TPO link time optimizations




Data Reshape Analyses

J Safety and legality issues
> Inter-procedural alias analysis
v" Pointer escape analysis
v" Global pointer analysis
» Data shape analysis
4 Profitability issues
» Data affinity analysis




Inter-procedural Alias Analysis

4 To ensure data reshaping correctness since compiler needs to
modify all the affected references when it reshapes a data
object and its aliases.

d Flow-insensitive alias analysis is sufficient for data reshaping
[Steensgaard].

4 Field sensitive alias analysis is necessary to trace and
distinguish the alias relationships among different fields.
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Data Shape Analysis

J Reshaping on data that has incompatible type is unsafe and is
strictly avoided.

J Type compatibility analysis is integrated with the interprocedural
alias analysis.

» The interprocedural alias analysis keeps track of the type of
each alias set.

> The types of data in an alias set must be compatible in the
whole program for safe data reshaping.

d Compatibility rules are enforced to check the access patterns.
Two data types are compatible if

» Two intrinsic data types are compatible if their data lengths are identical.

» Two aggregated data structures are compatible if they have the same number of byte-level
fields and their corresponding fields have the same offset and length.

» Two arrays have compatible types if their element types are compatible, they have the
same dimensions and the strides of corresponding dimensions are also identical.

» Two pointers are of compatible types iff the data they point to have compatible types.




nghtwelght Data Affinity Analysis
(Joint Work With Xipeng Shen and Chen Ding)

J To measure how closely a group of data are accessed together
In @ program region.
d Model affinity based on access frequency:

» An access frequency vector AFV(A) is used for each data
to record all the access frequency in all the innermost loops
In the program.

» Unique data is identified based on alias analysis, and AFVs
of their aliases are merged.

» Two data have good affinity if their AFVs are similar:
affinity(A4,B) =1- Z [ (f;(4) = £,(B)]/(0.0001 + Z(f(A) + £(B)))

N - # of innermost loops, f(A) — access frequency of A in i-th loop

» Construct and partition data affinity graph to obtain all
the affinity groups.




Data Reshaping Planning

J Based on the reshape analysis and affinity analysis, a plan
IS made how to reshape a data.

> Array splitting
» Data outlining
» Data allocation merging

» Data interleaving
> ...




Array Splitting

J Separate cold fields from hot fields to avoid bringing rarely
accessed data into the cache in order to increase cache
utilization.

> A structure array is split into several contiguous arrays.

> Fields are reordered based on affinity information for
large data structure.

d Target to aggregate arrays that have consistent compatible
access patterns.

4 Three approaches:
> Affinity-based splitting
» Frequency-based splitting
» Maximal data splitting
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Array Splitting — Three Approaches

4 Original data structure

> hot (FO,F2, F3), affinity groups (F0, F3) (F2), (F1, F4)

4 Original array [4]

F20 F21 F22 F23

 Affinity-based splitting

F20|F21|F22|F23

d Frequency -based spllttln

d Maximal data splitting

F20|F21|F22|F23




rray Splitting - Static Arrays




Array Splitting — Single-Instantiated Dynamic Arrays
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Array Splitting — Multiple-Instantiated Dynamic Arrays

4 Runtime descriptor is introduced to handle the multiple instantiations.




Data Outlining

J Separate cold fields from hot fields to avoid bringing rarely
accessed data into the cache in order to increase cache
utilization.

4 Target to non-array data objects whose collection of hot
fields are smaller than the cache block size.

J The outlined fields must be cold.

J No need to worry about single/multiple object instantiations.




Sow
Data Outlining Approach

[ Original linked list element:

4 Original linked list

F20 F21 F22

J Frequency-based outlining

F20 F21 F22




Data Allocation Merging

4 Flat multi-dimensional dynamic array into contiguous
memory space to achieve better reference locality.

d Target to multi-dimensional dynamic arrays with (almost)
rectangular shapes. Padding is needed for non-rectangular
shaped multi-dimensional dynamic arrays.

4 Facilitate loop locality transformation since indirect reference
is replaced by array indexed reference.

J Runtime descriptor is also introduced to handle the multiple
object instantiation cases.




Data Allocation Merging Approach

4 Original two dimensional dynamic array **A

BasePtr —»

Al0]

A[1]

Al2]

A3

J After data allocation merging *A’

BasePtr —
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Data Allocation Merging — Dynamic Arrays




Comparison of Splitting Approaches
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SPEC2000 Performance Improvement
With Data Reorganizations
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SPEC2000 Performance Improvements
With Data Reorganizations

150 -

runtime (seconds)

-

(=]

(=)
|

n
o
|

0 _
art mcf

equake ammp*

B power4 no-data-reorganization
B power5 no-data-reorganization

B power4 with-data-reorganizations
M power5 with-data-reorganizations




Effect of Data Reorganizations
Reduction on DL1 misses

30 7

6.3

% . DL1 miss rates (V) 6 DL1 misses (G)

54 953

art mcf equake ammp art mcf equake ammp

® no-data-reorganization

. !'yvuithjdateornization (Measured on power4 1.1GHz, AlX5.2)




Effect of Data Reorganizations
Reduction on DL2 misses
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Summary

4 A practical framework that guarantees safe automatic data
reorganization.

> Implemented in IBM XL compiler
d Impressive performance improvements on benchmarks and
customer codes.

» Four SPEC2000 benchmarks improved significantly.
d Future work

> Improve the data shape analysis to capture more

complex data access pattern
» Pursue more data reorganization techniques




Backups




Data Interleaving

J Group data with high affinity and put them together in
memory

J Reduce the number of hardware streams and also reduce
the cache conflicts

 Target to data in a program region with too many streams.

double a[1000j; struct {

double b[1000]; double x;
double v;
} ab[1000];

for (i=0; i<N; i++) { for (i=0; i<N; i++) {
.=all] ...; ... =abfi].x...;

=[] .. .= abily ...
} }




Data Padding and Alignment

d Array splitting
> Inter array padding can be added between those new
arrays for alignment (e.g., to ensure SIMD alignment), to
avoid false sharing.
J Memory allocation merging
> Intra array padding can be incorporated easily into the
framework to avoid cache conflicts




