Software Group | Compiler Technology

Experiments with auto-parallelizing
SPEC2000FP benchmarks

Guansong Zhang
CASCON 2004

October 6, 2004 © 2004 IBM Corporation

Compiler technology

Authors

Guansong Zhang, Priya Unnikrishnan, James Ren
Compiler Development Team
IBM Toronto Lab, Canada

{guansong,priyau,jamesren}@ca.ibm.com

(most slides from Priya’s LCPC2004 presentation)

October 6, 2004 © 2004 1BM Corporation

Compiler technology

Overview

= | ntroduction and motivation
= Structure of our auto-parallelizer
= Performance results

= | imitations and future work

October 6, 2004 © 2004 1BM Corporation

Compiler technology

Auto parallelization, again?

HPF (Fortran D)
-V 1.01992;V 2.0 1997

= MPI
-V 1.0, 1994; V 2.0 2002

OpenMP
—V 1.0, 1997; V 2.0 2000; V 2.5 2005

Other parallel programming tools/models
— Global array (1994), HPJava(1998), UPC(2001),

Auto parallelization tools
— ParaWise (CAPtools, 2000), Other efforts: Polaris, SUIF, ...

October 6, 2004 © 2004 1BM Corporation

Compiler technology

The most effective way in parallelization

Discover parallelism in the algorithm

D R,
oii—'l @ o o o
bbb

October 6, 2004 © 2004 1BM Corporation

Compiler technology

So, why?

» User expertise required

—Knowledge of parallel programming, dependence
analysis

—Knowledge of the application, time and effort
» Extra cycles In desktop, even laptop computing
—hyperthread

—multicore

October 6, 2004 © 2004 IBM Corporation

Compiler technology

SPEC, from CPU2000to OMP

» Parallel programming is difficult.
—Even for just getting it right
» Parallelizable problem exist

— Amdahl's Law vs. Gustafson's Law

—10 of thel4 SPEC CPU FP tests are In
SPECOMPM

—9 of the 11 SPECOMPM tests are In
SPECOMPL

October 6, 2004 © 2004 IBM Corporation

Compiler technology

Strategy

» Make parallelism accessible to general users

—Shields users from low-level detalls

» Take advantage of extra hardware
—Do not waste the cycle and the power

= Our emphasis
—Use simple parallelization techniques

—Balance performance gain and compilation
time

October 6, 2004 © 2004 IBM Corporation

Compiler technology

Compiler infrastructure

Machine level optimization

——

Link editor
)

October 6, 2004 © 2004 1BM Corporation

Compiler technology

Our auto-parallelizer features

» Use OpenMP compiler and runtime infrastructure

— for parallelization and parallel execution.

» Essentially a Loop parallelizer,

— inserting “Parallel do” directives

» Can further optimize an OpenMP programs

— general optimization specific to an OpenMP program

* Depending on dependence analyzer

— core of the parallelizer, shared with other loop
optimizations

October 6, 2004 © 2004 IBM Corporation

Compiler technology

Pre-parallelization Phase

= Induction variable elimination
= Scalar Privatization
* Reduction finding

» Loop transformations favoring parallelism

October 6, 2004 © 2004 1BM Corporation

Compiler technology

Basic loop parallelizer

begin
for each loop nest in a procedure do
for each loop in the nest in the depthfirst ovder (outer first) do
if the loop is user parvallel then
| break

if the loop is marked sequential, has side-effects etc then
L continue

if the loop has loop carried dependence then
try splitting the loop to eliminate dependence
if dependence not eliminated then

. continue

if loop cost is known at compile time then
if the loop has not enough cost then
L break

else
L Insert code for run-time cost estimate

Mark this loop auto parallel
break

end

October 6, 2004 © 2004 1BM Corporation

Compiler technology

for each loop nest in proc

v

> for each loop in nest

.............. yes

%
®
el
c
®
=
=,
o
\ 4

<

]

2]
28
o
P
[¢)
=
=
(4%
o
—
wn
\ 4

...... g : yes
<_dependence_s+— split loop . dependence:

no

insert runtime cost expr

Y

. mark auto parallel loop |

October 6, 2004 © 2004 1BM Corporation

Compiler technology

L oop Cost

» LoopCost = (Iterationcount * ExecTimeOfLoopBody)
= Compile time cost

» (LoopCost < Threshold)

* Runtime loop cost expression — extremely light-weight

= Runtime profiling — finer granularity filtering

October 6, 2004 © 2004 1BM Corporation

Compiler technology

| mpact of Loop cost on performance

1800
1600
1400
1200
1000

800

time(sec.)

600
400
200

@ WithoutLoopCostCil
O WithLoopCostCtl

S @K
(2 <
& &

October 6, 2004 © 2004 IBM Corporation

Compiler technology

Accuracy of loop cost algorithm

Benchmark #Parallelizable #HighCostL oops #L owCostL oops

HighCostL oops selected by selected by

from PDF Parallelizer Parallelizer
swim 5 0
mgrid 0
applu 11 11 0
galgel 49 36 0
sixtrack 13 11 0
fma3d 33 33 0

October 6, 2004 © 2004 1BM Corporation

Compiler technology

Balance coar se-grained parallelism and locality

* Loop interchange for data locality
* Loop interchange to exploit parallelism

* Transformations do not always work in harmony

DOl =1, N
DOJ =1, N
DOK =1, N
ACT, J, K = A(I, J, K+1)
END DO
END DO
END DO

October 6, 2004 © 2004 1BM Corporation

Compiler technology

Perfor mance: loop permutation for parallelism

Time(sesonds)

2.5

1.5

0.5

Execution time difference

Baseline s
|mproved s

11

Number of processors

© 2004 IBM Corporation

October 6, 2004

Compiler technology

Auto-parallelization performance — 10%

One CPU vs. two CPU runs

B Sequential

O Parallel

N
o
o

[HEN
a1
o

time(sec.)

October 6, 2004

© 2004 1BM Corporation

Compiler technology

Expose limitations

» Compare SPEC2000FP and SPECOMP

= SPECOMP achieves good performance and
scalability

— Disparity between explicit and auto-parallelization
* EXpose missed opportunities

= 10 common benchmarks

— Compare on a loop-to-loop basis

October 6, 2004 © 2004 1BM Corporation

Compiler technology

L imitations

= Loop body contains function calls
= Array privatization

COVPLEX*16 AUX1(12), AUX3(12)

DO 100 JKL = 0, N2 * N3 * M - 1
DO 100 | =(MOD(J+K+L, 2) +1), N1, 2
| P=MOD(|, N1) +1
CALL GAMMUL (1,0, X(1,(I1P+1)/2,J,K L), AUX1)
CALL SUSMUL (1,1,1,1,J,K L)," N, AUX1, AUX3)

100 CONTI NUE

October 6, 2004 © 2004 1BM Corporation

Compiler technology

L imitations ... contd

= Zero trip loops

| V=0
DO J=1, M
DO | =1, N
| V=1 V+1
A(1V) =0
ENDDO
ENDDO

— Induction variable ‘IV=1+(J-1)*N’
— Valid if N is positive.
— Cannot parallelize outer-loop if N is zero

October 6, 2004 © 2004 1BM Corporation

Compiler technology

| mproved auto-parallelization perfor mance

One CPU vs. two CPU runs

350
W Sequential
300 | @ Parallel
W Parallel+manual
250
qo)' 200 I I
&£
£ 150
100 -
O,
@66 s\@ &\é Q\o \§} & Qé\ &6 Q;bé @(\)J: @6@ & (slg, K
e <
R A eSS S

October 6, 2004 © 2004 1BM Corporation

Compiler technology

System Configuration

= SPEC2000 CPU FP benchmark suite

* IBM XL Fortran/C/C++ commercial compiler
Infrastructure which implements OpenMP 2.0

» Hardware : 1.1GHz POWER4 with 1-8 nodes
= Compiler options: -O5 —gsmp

— Comparing to —O5 as sequential

October 6, 2004 © 2004 IBM Corporation

Compiler technology

Future Work

* Fine tune the heuristics
— Loop cost, permutation, unroll.

» Further loop parallelization
— Array dataflow analysis, array privatization
— Do across, loop with carried dependence
— Interprocedural, runtime dependence analysis

= Speculative execution
— OpenM P threadprivate, sections, task queue

» Keep reasonable increase in compilation time
— not to compete with auto-par tools in the near future

October 6, 2004 © 2004 IBM Corporation

	Experiments with auto-parallelizing SPEC2000FP benchmarks
	Authors
	Overview
	Auto parallelization, again?
	The most effective way in parallelization
	So, why?
	SPEC, from CPU2000 to OMP
	Strategy
	Compiler infrastructure
	Our auto-parallelizer features
	Pre-parallelization Phase
	Basic loop parallelizer
	Loop Cost
	Impact of Loop cost on performance
	Accuracy of loop cost algorithm
	Balance coarse-grained parallelism and locality
	Performance: loop permutation for parallelism
	Auto-parallelization performance – 10%
	Expose limitations
	Limitations
	Limitations … contd
	Improved auto-parallelization performance
	System Configuration
	Future Work

