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Performance and Productivity Challenges 
facing Future Large-Scale Systems

1) Memory wall: Severe non-
uniformities in bandwidth & 
latency in memory hierarchy
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SMP
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2) Frequency wall: Multiple layers of 
hierarchical heterogeneous 
parallelism to compensate for 
slowdown in frequency scaling

3) Scalability wall: Software will need 
to deliver ~ 105-way parallelism to 
utilize large-scale parallel systems
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IBM PERCS Project
(Productive Easy-to-use Reliable Computing Systems)

Increase
overall 

productivity

Increase development 
productivity

Increase number of 

applications written

PERCS Programming Tools
performance-guided parallelization and transformation, static 
& dynamic checking, separation of concerns --- all integrated 

into a single development environment (Eclipse)
Increase 

performance 
of applications

MPIOpenMPPERCS Programming Model

Static and Dynamic Compilers for base language w/ 
programming model extensions

Mature languages: C/C++, Fortran, Java
Experimental languages: X10, UPC, StreamIt, HTA/Matlab

Increase 
execution 
productivity Language Runtime + Dynamic Compilation + Continuous Optimization

PERCS System Software (K42)

PERCS System Hardware
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Limitations in exploiting Compiler-Driven 
Performance in Current Parallel Programming Models

• MPI: Local memories + message-passing
− Parallelism, locality, and “global view” are completely managed by 

programmer
− Communication, synchronization, consistency operations specified at 

low level of abstraction
Limited opportunities for compiler optimizations

• Java threads, OpenMP: shared-memory parallel programming model
− Uniform symmetric view of all shared data
− Non-transparent performance --- programmer cannot manage data 

locality and thread affinity at different hierarchy levels (cluster, SMT, …)
Limited effectiveness of compiler optimizations

• HPF, UPC: partitioned global address space + SPMD execution model
− User specifies data distribution & parallelism, compiler generates 

communications using owner-computes rule
− Large overheads in accessing shared data; compiler optimizations can 

help applications with simple data access patterns
Limited applicability of compiler optimizations
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X10 Design Guidelines: Design for Productivity & 
Compiler/Runtime-driven Performance

• Start with state-of-the-art OO 
language primitives as foundation 
− No gratuitous changes
− Build on existing skills

• Raise level of abstraction for 
constructs that should be 
amenable to optimized 
implementation
− Monitors atomic sections
− Threads async activities
− Barriers clocks

• Introduce new constructs to model 
hierarchical parallelism and non-
uniform data access
− Places
− Distributions

• Support common parallel 
programming idioms 
− Data parallelism
− Control parallelism
− Divide-and-conquer
− Producer-consumer / streaming
− Message-passing

• Ensure that every program has a 
well-defined semantics 
− Independent of implementation
− Simple concurrency model & 

memory model

• Defer fault tolerance and reliability 
issues to lower levels of system
− Assume tightly-coupled system 

with dedicated interconnect
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Logical View of X10 Programming Model
(Work in progress)
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control
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stack

control

. . .
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Activity-local storage
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Place Place

• Place = collection of resident activities 
and data
− Maps to a data-coherent unit in a 

large scale system

• Four storage classes:
− Partitioned global
− Place-local
− Activity-local
− Value class instances

• Can be copied/migrated freely

• Activities can be created by
− async statements (one-way msgs)
− future expressions
− foreach & ateach constructs

• Activities are coordinated by
− Unconditional atomic sections
− Conditional atomic sections
− Clocks (generalization of barriers)
− Force (for result of future)

Activities &
Activity-local storage

Granularity of 
place can range 
from single h/w
thread to an entire 
scale-up system

Value
Class

Instances
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Async activities: abstraction of threads

• Async statement
− async(P){S}: run S at place P
− async(D){S}: run S at place 

containing datum D
− S may contain local atomic 

operations or additional async
activities for same/different places. 

• Example: percolate process to data.

• Async expression (future)
− F = future(P){E}, or

F = future(D){E}: Return 
the value of expression E, 
evaluated in place P (or the 
place containing datum D)

− force F or !F : suspend until 
value is known

• Example: percolate data to process.
public void put(K key, V value) {

int hash = key.hashCode()% D.size;
async (D[hash]) {

for (_ b = buckets[hash]; b != null; b = b.next) {
if (b.k.equals(key)) {

b.v = value;
return;

}
}
buckets[hash] = 

new Bucket<K,V>(key, value, buckets[hash]);
};

}

public ^V get(K key) {
int hash = key.hashCode()% D.size;
return future (D[hash]) {

for (_ b = buckets[hash]; b != null; b = b.next) {
if (b.k.equals(key)) {

return b.v;
}

}
return new V();

}
}

Distributed hash-table example
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RandomAccess (GUPS) example

public void run(int a[] blocked, int seed[] cyclic,

int value smallTable[]) {

ateach (start : seed clocked c) {

int ran = start;

for (int count : 1.. N_UPDATES/place.MAX_PLACES) {

ran = Math.random(ran); 

int j = F(ran); // function F() can be in C/Fortran

int k = smallTable[g(ran)];

async (a[j]) atomic {a[j]^=k;}

} // for

} // ateach

next c;

}
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Regions and Distributions

• Regions
− The domain of some array;

a collection of array indices
− region R = [0..99];
− region R2 = [0..99,0..199];

• Region operators
− region Intersect = R3 && 

R4;
− region Union = R3 || R4;
− Etc.

• Distributions
− Map region elements to places

• distribution D = cyclic(R);

− Domain and range restriction:
• distribution D2 = D | R;

• distribution D3 = D | P;

• Regions/Distributions can be used 
like type and place parameters
− <region R, distribution D>

void m(...)
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ArrayCopy example: example of high-
level optimizations  of async activities

Version 1 (orginal):
<value T, D, E>  public static void

arrayCopy( T[D] a, T[E] b) {
// Spawn an activity for each index to 
// fetch and copy the value

ateach (i : D.region) 
a[i] = async b[i];

next c; // Advance clock
}

Version 2 (optimized):
<value T, D, E>  public static void

arrayCopy( T[D] a, T[E] b) {
// Spawn one activity per place 
ateach ( D.places )  

for ( j : D | here ) 
a[i] = async b[i];

next c; // Advance clock 
}

Version 3 (further optimized):
<value T, D, E>  public static void

arrayCopy( T[D] a, T[E] b) {
// Spawn one activity per D-place and one
// future per place p to which E maps an 
// index in (D | here).

ateach ( D.places ) {
region LocalD = (D | here).region;
ateach ( p : E[LocalD] ) {

region RemoteE = (E | p).region;
region Common = 

LocalD && RemoteE;
a[Common] = async b[Common];

}
}

next c; // Advance clock
}
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Uniform treatment of Arrays & Loops 
and Collections & Iterators

• Distributed Collections
− Map collection elements to 

places
− Collection<D,E> identifies a 

collection with distribution D and 
element type E

• Parallel iterators
− foreach (e : C) { … }
− ateach ( C ) { … here … }

• Sequential iterator
− for (e : C) 

• Arrays
− Map region elements to values 

(therefore multidimensional)
− Declared with a given 

distribution
− int[D] array;

• Loops
− ateach (D[R]) { ... }
− ateach (array) { ... }
− foreach (i : R) { ... }
− foreach (i : D) { ... }
− foreach (i : array) { ... }
− sequential variants of foreach

are available as for loops



V. Sarkar CDP 2004 Workshop 13

Clocks: abstraction of barriers

• Operations:
clock c = new clock();
now(c){S}

• Require S to terminate before clock 
can progress.

continue c;
• Signals completion of work  by 

activity in this clock phase.
next c1,…,cn ;

• Suspend until clocks can advance. 
Implicitly continues all clocks. 
c1,…,cn names all clocks for activity.

drop c;
• No further operations on c..

• Semantics
− Clock c can advance only when 

all activities registered with the 
clock have executed continue c..

• Clocked final
− clocked(c) final int l = r;
− Variables is “final” (immutable)  until 

next phase
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Unstructured Mesh Transport Example (UMT2K) 

• 3D, deterministic, multi-group, photon transport code

• Solves 1st order form of steady-state Boltzman equation

• Represented by an unstructured mesh
− Partitioning strives to maintain load balance, reduce 

communicate/compute ratio

Figure source: Modified from 
Mathis and Kerbyson, IPDPS 2004
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Communication Structure

• Nearest neighbor communication in graph domain

• Communication can be minimized via judicious mapping of 
graph to system nodes

Figure source: Modified from Mathis and Kerbyson, IPDPS 2004
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UMT2k in X10: example of hierarchical 
heterogeneous parallelism

do {
now ( c ) {

ateach ( n : nodes ) {  // Cluster-level parallelism
foreach ( s : Sweeps ) { // SMP parallelism

// receive inputs
flows = new Flux[R] (k) { // SMT parallelism

async (…) inputs[s][k].receive(); 
}
// Choice of using clock or force to synchronize on flows[*]
// Thread-local with vector & co-processor parallelism 
flux = compute(s, flows);  
// send outputs
. . .

} // foreach
} // ateach

} // now
// use clock c to wait for all sweeps to complete
next c; 
. . .

} while ( err > MAX_ERROR ) ;

Clusters (scale-out)
SMP

Multiple cores on a chip
Coprocessors (SPUs)

SMTs
Vector (VMX)

ILP
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C+MPI FixedPoint iteration
(Simpler example than UMT2K)

int n;

double *A, *Tmp;

const double epsilon = 0.000001;

int main(int argc, char* argv[]) {

int i, iters;

double delta;

int numprocs, rank, mysize;

double sum;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (argc != 2) {

printf("usage: fixedpt n\n");

exit(1);

}

n = atoi(argv[1]);

mysize = n * (rank+1)/numprocs - n *  rank / numprocs;

A = malloc((mysize+2)*sizeof(double));

for (i = 0; i <= mysize; i++)   A[i] = 0.0;

if (rank == numprocs - 1)  A [mysize+1] = n + 1.0;

Tmp = malloc((mysize+2)*sizeof(double));

iters = 0;

do {
iters++;
if (rank < numprocs -1)
MPI_Send(&(A[mysize]), 1, MPI_DOUBLE, rank+1, 1, 

MPI_COMM_WORLD);
if (rank > 0)
MPI_Recv(&(A[0]), 1, MPI_DOUBLE, rank-1, 1, 

MPI_COMM_WORLD, MPI_STATUS_IGNORE);
if (rank > 0)
MPI_Send(&(A[1]), 1, MPI_DOUBLE, rank-1, 1, 

MPI_COMM_WORLD);
if (rank < numprocs-1)
MPI_Recv(&(A[mysize+1]), 1, MPI_DOUBLE, rank+1, 1, 

MPI_COMM_WORLD, MPI_STATUS_IGNORE);
for (i=1; i <=mysize; i++)  Tmp[i] = (A[i-1]+A[i+1])/2.0;
delta = 0.0;
for (i = 1; i <= mysize; i++)  delta +=fabs(A[i]-Tmp[i]);
MPI_Allreduce(&delta, &sum, 1, MPI_DOUBLE, MPI_SUM, 

MPI_COMM_WORLD);
delta = sum;
for (i = 1; i <= mysize; i++)  A[i]=Tmp[i];

} while (delta > epsilon);
if (rank == 0)  printf("Iterations: %d\n", iters);
MPI_Finalize();

} Courtesy: Larry Snyder et al

API-based control flow, distribution is hard-coded in program
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Reduction and Scan Operators

• Reduction operator over type T
− Static method with signature: T(T,T)
− Virtual method in class T with signature T(T)
− Operator is expected to be associative and commutative

• Reduction operation: A >> foo() returns value of type T, where
− A is an array over base type T
− A>>foo() performs reductions over all elements of A to obtain a 

single result of type T

• Scan operation: A || foo() returns array, B, of base type T, where
− B[i] = A[0..i]>>foo()
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Example of Unconditional Atomic Sections
SPECjbb2000: Java vs. X10 versions

Java version:
public class Stock extends Entity {…
private float  ytd;
private short orderCount; …
public synchronized void

incrementYTD(short ol_quantity) { …
ytd += ol_quantity; …}…

public synchronized void
incrementOrderCount() { …

++orderCount; …} …
}

X10 version (w/ atomic section):
public class Stock extends Entity {…

private float  ytd;

private short orderCount; …

public atomic void

incrementYTD(short ol_quantity) { …

ytd += ol_quantity; …}…

public atomic void

incrementOrderCount() { …

++orderCount; …} …

}

These two methods cannot be 
executed simultaneously 
because they use the same 
lock

With atomic sections, X10 
implementation can 
choose to execute these 
two methods in parallel

lock

ytd
orderCount ytd

orderCount

lock1

lock2

Layout of 
a “Stock” 

object

Atomic Sections are deadlock-free!
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Example of Conditional Atomic Section

• Conditional Atomic Sections are similar to Conditional Critical 
Regions (CCRs)
− Powerful construct, misuse can lead to deadlock
− Need to identify special cases that are most useful in practice

class OneBuffer<value T> {
?Box<T> datum = null;
public void send(T v) {

when (this.datum == null) {
this.datum := new Box<T>(datum);

}
}
public T receive() {

when (this.datum !=null) {
T v = datum.datum;
value := null;
return v;

}
}

}



V. Sarkar CDP 2004 Workshop 21

Memory Model

• X10 focus is on data-race-free applications 

• Programmer uses atomic / clock / force operations to 
avoid data races
− X10 programming environment also includes data 

race detection tool

• Weak memory model for defining consistency of 
unsynchronized accesses
− Based on Location Consistency memory mode
− Akin to weak ordering guarantees of messages in 

MPI
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X10 Type System: Features relevant 
to Compiler Optimization

• Unified type system
− All data items are objects

• Value classes and clocked final
− Immutable --- no updatable fields
− However, target of object reference in a field can be mutable (if it’s 

not itself a value class instance)
• Type parameters

− Places, distributions, 
• Nullable

− All types are non-null by default, need to explicitly declare a variable 
as nullable

− For any type T, the type ?T (read: “nullable T”) contains all the values 
of type T, and a special null value, unless T already contains null.

• Support for both rectangular multidimensional arrays (matrices) and 
nested arrays
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X10 Compilation and Runtime Environment

X10 source code

X10 Front end

X10 Classfiles
X10 static
high-level
optimizer

X10 Virtual Machine
w/ PERCS CPO

Clusters (scale-out)

SMP

Multiple cores on a chip

Coprocessors (SPUs)

SMTs

Vector (VMX)

ILP

Hardware 
parameters

Profile
Feedback OS

Hardware 
parameters
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Relating optimizations for past programming 
paradigms to X10 optimizations

Programming 
paradigm

Activities Storage classes Important optimizations

Message-
passing e.g., 
MPI

Single activity per 
place

Place local Message aggregation, optimization of 
barriers & reductions

Data parallel 
e.g., HPF

Single global 
program

Partitioned global SPMDization, synchronization & 
communication optimizations

PGAS e.g., 
Titanium, UPC

Single activity per 
place

Partitioned global, place local Localization, SPMDization, 
synchronization & communication 
optimizations

DSM e.g., 
TreadMarks

Multiple Partitioned global, activity 
local

Data layout optimizations, page locality 
optimizations

NUMA Single activity per 
place

Partitioned global, activity 
local

Data distribution, synchronization & 
communication optimizations

Futures / active 
messages

Multiple Place-local, activity local Message aggregation, synchronization 
optimization

Co-processor 
e.g., STI Cell

Single activity per 
place

Partitioned-global, place-local Data communication, consistency, & 
synchronization optimizations

Full X10 Multiple activities in 
multiple places

Partitioned-global, place-local, 
activity-local

All of the above
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Some Challenges in Optimization 
of X10 programs 

• Analysis and optimization of explicitly parallel programs
− Proposed approach: use Parallel Program Graph (PPG) 

representation
• Analysis and optimization of remote data accesses

− Proposed approach: perform data access aggregation and elimination 
using Array SSA framework

• Optimized implementation of Atomic Sections
− Simple cases that can be supported by hardware e.g., reductions
− Analyzable atomic sections
− General case

• Load-balancing
− Dynamic, adaptive migration of place s

• Continuous optimization
− Efficient implementation of scan/reduce 

• Efficient invocation of components in foreign languages 
− C, Fortran

• Garbage collection across multiple places
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X10 Status and Plans
• Draft Language Design Report available internally w/ set of sample 

programs
• Implementation begun on Prototype #1 for 1/2005

− Functional reference implementation of language subset, not 
optimized for performance

− Support for calls to single-threaded native code (C, Fortran)
• Productivity experiments planned for 7/2005

− Use prototype #1 to compare X10 w/ MPI, UPC
− Revise language based on feedback from productivity 

experiments
• Prototype #2 planned for 12/2005

− Includes design & prototype implementation of selected 
optimizations for parallelism, synchronization and locality in X10 
programs

− Revise language based on feedback from design evaluation
• Next phase of PERCS project planned for 7/2006 – 6/2010 timeframe
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Conclusions and Future Work

• Future Large-scale Parallel Systems will be accompanied by  
severe productivity and performance challenges 

• Summarized X10 language approach in PERCS project, with a 
focus on next steps:
− Use applications and productivity studies to refine design 

decisions in X10
− Prototype solutions to address implementation challenges

• Future work (beyond 2005)
− Explore integration of X10 with other language efforts in IBM

• XML (XJ), BPEL, …
− Community effort to build consensus on standardized “high 

productivity” languages for HPC systems in the 2010 
timeframe


