X10: New opportunities for
Compiler-Driven Performance
via a new Programming Model

Kemal Ebcioglu
Vijay Saraswat
Vivek Sarkar
IBM T.J. Watson Research Center
{kemal,vsaraswat,vsarkar}@us.ibm.com

Compiler-Driven Performance Workshop --- CASCON

2004
Oct 6, 2004
This work has been sy g@ﬂed in part by the Defense Advanced Research Projects —
Agency ? ARPA) under contract No. NBCH30390004. _—

-



Acknowledgments

. IBM PERCS Team members

Research

Systems & Technology Group

Software Group
Pl: Mootaz Elnozahy

* University partners:

£

-

Cornell

LANL

MIT

Purdue University
RPI

UC Berkeley

U. Delaware

U. lllinois

U. New Mexico

U. Pittsburgh

UT Austin
Vanderbilt University

ACS v. sarkar

CDP 2004 Workshop 2

Contributors to X10 design & implementation
ideas:

David Bacon

Bob Blainey

Philippe Charles

Perry Cheng

Julian Dolby

Kemal Ebcioglu

Guang Gao (U Delaware)
Allan Kielstra

Robert O'Callahan

Filip Pizlo (Purdue)
Christoph von Praun
V.T.Rajan

Lawrence Rauchwerger (Texas A&M)
Vijay Saraswat (contact for lang. spec.)
Vivek Sarkar
Mandana Vaziri
Jan Vitek (Purdue)

=



Performance and Productivity Challenges
facing Future Large-Scale Systems

2) Frequency wall: Multiple layers of
hierarchical heterogeneous
parallelism to compensate for
slowdown in frequency scaling

1) Memory wall: Severe non-
uniformities in bandwidth &
latency in memory hierarchy

Clusters (scale-out)

Proc Cluster| Proc Cluster

PEs, PEs,
d B
[ocame 1| |Cizcache | Multiple cores on a chip

Coprocessors (SPUs)

SMTs
. SIMD
I ILP
L3 Cache
,t,emo:y S 3) Scalability wall: Software will need
to deliver ~ 10°>-way parallelism to
utilize large-scale parallel systems
PERCS v. sarkar CDP 2004 Workshop 3 =S



IBM PERCS Project
(Productive Easy-to-use Reliable Computing Systems)

INncrease

overall ) Increase number of Increase development
productivity applications written productivity
Increase
performance

of applications _

Increase
execution

Productivity [\ anguage Runtime + bynamic Compilation + Continuous Optimization |
pﬁe’sg v Samn  PERCSSysembardware |




Limitations in exploiting Compiler-Driven
Performance in Current Parallel Programming Models
S

« MPI: Local memories + message-passing

- Parallelism, locality, and “global view” are completely managed by
programmer

- Communication, synchronization, consistency operations specified at
low level of abstraction

= Limited opportunities for compiler optimizations

« Javathreads, OpenMP: shared-memory parallel programming model
- Uniform symmetric view of all shared data

- Non-transparent performance --- programmer cannot manage data
locality and thread affinity at different hierarchy levels (cluster, SMT, ...)

=>» Limited effectiveness of compiler optimizations

« HPF, UPC: partitioned global address space + SPMD execution model

- User specifies data distribution & parallelism, compiler generates
communications using owner-computes rule

— Large overheads in accessing shared data; compiler optimizations can
help applications with simple data access patterns

= Limited applicability of compiler optimizations

¢

p S V. Sarkar CDP 2004 Workshop 5 T TR o




X10 Design Guidelines: Design for Productivity &
Compiler/Runtime-driven Performance

- Start with state-of-the-art OO *
language primitives as foundation

— No gratuitous changes
— Build on existing skills

« Raise level of abstraction for
constructs that should be
amenable to optimized
Implementation

- Monitors = atomic sections °
— Threads - async activities
— Barriers = clocks

* Introduce new constructs to model
hierarchical parallelism and non-
uniform data access *

- Places
— Distributions

(A%

-
p > 4%

@S v. sarkar CDP 2004 Workshop 6

Support common parallel
programming idioms

— Data parallelism

— Control parallelism

— Divide-and-conquer

— Producer-consumer / streaming
— Message-passing

Ensure that every program has a
well-defined semantics

- Independent of implementation

- Simple concurrency model &
memory model

Defer fault tolerance and reliability
issues to lower levels of system

— Assume tightly-coupled system
with dedicated interconnect

|
il
Iy



Logical View of X10 Programming Model
(Work in progress)

Place

Outbound
™ async
Partitioned Global heap requests

Inbound Place
async —
requests Partitioned Global heap

—

Granularity of
place can range
from single h/w
thread to an entire

Place-local heap

Activities &
Activity-local storage

scale-up system heap heap :
stack stack
Inbound
control control async
replies

. Place = collection of resident activities
and data

— Maps to a data-coherent unitin a
large scale system
 Four storage classes:
- Partitioned global
- Place-local
- Activity-local

- Value class instances
+ Can be copied/migrated freely

JLE -;.-';:.
p A V. Sarkar

CDP 2004 Workshop

Place-local heap
- Value
Activities & Class
Activity-local storage Instances
heap heap
<:| stack stack
Outbound
async control control
replies

* Activities can be created by
— async statements (one-way msgs)
— future expressions
- foreach & ateach constructs

» Activities are coordinated by
- Unconditional atomic sections
- Conditional atomic sections
— Clocks (generalization of barriers)
— Force (for result of future)



Async activities: abstraction of threads

« Async statement  Async expression (future)
— async(P){S}: run S atplace P - F = future(P){E}, or
containing datum D the value of expression E,

evaluated in place P (or the
place containing datum D)

- Torce F or !F: suspend until
value is known

- S may contain local atomic
operations or additional async
activities for same/different places.

« Example: percolate process to data.
« Example: percolate data to process.
public void put(K key, V value) {

int hash = key.hashCode()% D.size; public *V get(K key) {
async (D[hash]) { int hash = key.hashCode()% D.size;
for (_b = buckets[hash]; b !=null; b = b.next) { return future (D[hash]) {
if (b.k.equals(key)) { for (_b = buckets[hash]; b !=null; b = b.next) {
b.v =value; if (b.k.equals(key)) {
return; return b.v;
} }
} }
buckets[hash] = return new V();
new Bucket<K,V>(key, value, buckets[hash]); }
I3 }

- ‘ Distributed hash-table example

@GS v. sarkar CDP 2004 Workshop 8



RandomAccess (GUPS) example

public void run(int a[] blocked, int seed[] cyclic,
int value smallTable[]) {
ateach (start : seed clocked c) {
int ran = start;

for (int count : 1.. N_UPDATES/place.MAX PLACES) {
ran = Math.random(ran);

int § = F(ran); // function F() can be 1n C/Fortran
int k = smallTable[g(ran)];

async (a[j]) atomic {a[j]=k;}

} // for
} // ateach
next c;
g “%ﬁé? T ===
p V. Sarkar CDP 2004 Workshop 9 =Es=T=



Regions and Distributions

 Regions

— The domain of some array;
a collection of array indices

— region R = [099],
- region R2 =[0..99,0..199];
- Region operators

- region Intersect = R3 &&
R4:

— region Union = R3 || R4;
- Etc.

LG

p V. Sarkar

CDP 2004 Workshop 10

Distributions
— Map region elements to places
« distribution D = cyclic(R);
— Domain and range restriction:
 distribution D2 =D | R;
« distribution D3 =D | P;

Regions/Distributions can be used
like type and place parameters

— <region R, distribution D>
void m(...)

[
(KA
Myl
_““““



ArrayCopy example: example of high-
level optimizations of async activities

Version 1 (orginal):
<value T, D, E> public static void
arrayCopy( T[D] a, T[E] b) {
/[ Spawn an activity for each index to
/l fetch and copy the value
ateach (i : D.region)
a[i] = async b[i];
next c; // Advance clock

Version 3 (further optimized):
<value T, D, E> public static void
arrayCopy( T[D] a, T[E] b) {
/[ Spawn one activity per D-place and one
// future per place p to which E maps an
/lindex in (D | here).
ateach ( D.places ) {
region LocalD = (D | here).region;
ateach (p : E[LocalD] ) {
region RemoteE = (E | p).region;
region Common =
LocalD && RemoteE;
a[Common] = async b[Common];

Version 2 (optimized):
<value T, D, E> public static void
arrayCopy( T[D] a, T[E] b) {
/I Spawn one activity per place
ateach ( D.places)
for (j: D | here)
a[i] = async bJi];
next c; // Advance clock

}

next c; // Advance clock

PERCS v. sarkar CDP 2004 Workshop 11



Uniform treatment of Arrays & Loops
and Collections & Iterators
S

« Arrays « Distributed Collections
- Map region elements to values — Map collection elements to
(therefore multidimensional) places
distribution collection with distribution D and

element type E
— int[D] array; yp

« Parallel iterators
— foreach (e:C){...}

— ateach (C){... here ... }

 Loops
— ateach (D[R]){ ... }

— ateach (array){ ... } o
— foreach (i : R) { ...} « Sequential iterator

— foreach (i:D){...} - for(e:C)
— foreach (i : array){ ... }

— sequential variants of foreach
gare available as for loops
"

:
p /%

=

V. Sarkar CDP 2004 Workshop 12



Clocks: abstraction of barriers

« Operations: * Semantics
clock ¢ = new clock(): — Clock ¢ can advance only when
W O all activities registered with the
now(c){S} clock have executed continue c..
* Require S to terminate before clock Clocked final
can progress. ockedfina
continue c: - clogked((?) fi.nal ir_1t | =r; |
. Signals completion of work by - X:;ltabrlles is “final” (immutable) until
ey : phase
activity in this clock phase.

next c,,...,C, ;

« Suspend until clocks can advance.
Implicitly continues all clocks.
Cq,...,C, N@ames all clocks for activity.

drop c;
» No further operations on c..

CS V. sarkar CDP 2004 Workshop 13

L2

-

[
IH|
il
)

I
lin

=



Unstructured Mesh Transport Example (UMT2K)

« 3D, deterministic, multi-group, photon transport code
« Solves 1st order form of steady-state Boltzman equation

« Represented by an unstructured mesh

— Partitioning strives to maintain load balance, reduce
communicate/compute ratio

Figure source: Modified from
ﬁ Mathis and Kerbyson, IPDPS 2004
_"’

PERCS v. sarkar CDP 2004 Workshop 14

|
il
)



Communication Structure

PERES v. sarkar CDP 2004 Workshop 15

Nearest neighbor communication in graph domain

Communication can be minimized via judicious mapping of
graph to system nodes

Figure source: Modified from Mathis and Kerbyson, IPDPS 2004



UMT2k in X10: example of hierarchical
heterogeneous parallelism

do {
now (c){
ateach (n: nodes ) { // Cluster-level parallelism
foreach (s : Sweeps ) { // SMP parallelism
/I receive inputs
flows = new Flux[R] (k) { // SMT parallelism
async (...) inputs[s][k].receive();

}
/I Choice of using clock or force to synchronize on flows[*]
/I Thread-local with vector & co-processor parallelism
flux = compute(s, flows);
/I send outputs

} /l foreach
} /l ateach
} I/ now
I/l use clock c to wait for all sweeps to complete
next c;

} while (err > MAX_ERROR) ;

@S V. Sarkar CDP 2004 Workshop

Clusters (scale-out)

SMP

Multiple cores on a chip

Coprocessors (SPUs)

SMTs

Vector (VMX)

ILP

[jom]
I
il
iy

[
T
il“

16




C+MPI FixedPoint iteration
(Simpler example than UMT2K)

int n;
double *A, *Tmp;
const double epsilon = 0.000001;
int main(int argc, char* argv([]) {
inti, iters;
double delta;
int numprocs, rank, mysize;
double sum;
MPI_Init(&argc, &argvy);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (argc !1=2) {
printf("usage: fixedpt n\n");
exit(1);
}
n = atoi(argv([1]);

mysize =n * (rank+1)/numprocs - n * rank / numprocs;

A = malloc((mysize+2)*sizeof(double));

for (i = 0; i <= mysize; i++) A[i] =0.0;

if (rank == numprocs - 1) A [mysize+1] =n + 1.0;
Tmp = malloc((mysize+2)*sizeof(double));

iters = 0;

p V. Sarkar

CDP 2004 Workshop 17

do {
iters++;
if (rank < numprocs -1)

MPI_Send(&(A[mysize]), 1, MP|_DOUBLE, rank+1, 1,
MPI_COMM_WORLD);

if (rank > Q)

MPI_Recv(&(A[0]), 1, MPI_DOUBLE, rank-1, 1,
MPI_COMM WORLD MPI STATUS IGNORE)

if (rank > 0)

MPI_Send(&(A[1]), 1, MPI_DOUBLE, rank-1, 1,
MPI_COMM WORLD)

if (rank < numprocs-1)

MPI_Recv(&(A[mysize+1]), 1, MPI_DOUBLE, rank+1, 1,
MPI_COMM_WORLD, MPi_STATUS_IGNORE);

for (i=1; i <=mysize; i++) Tmpli] = (A[i-1]+A[i+1])/2.0;
delta = 0.0;
for (i = 1; i <= mysize; i++) delta +=fabs(A[i]-Tmp][il);

MPI_Allreduce(&delta, &sum, 1, MPI_DOUBLE, MPI_SUM,
MPI_COMM_WORLD);

delta = sum;
for (i = 1; i <= mysize; i++) Ali]=Tmpli];
} while (delta > epsilon);
if (rank == 0) printf("lterations: %d\n", iters);
MPI_Finalize();

} Courtesy: Larry Snyder et al

API-based control flow, distribution is hard-coded in program

[
I

I
lin



-

CS V. sarkar CDP 2004 Workshop 18

Reduction and Scan Operators

Reduction operator over type T
— Static method with signature: T(T,T)
— Virtual method in class T with signature T(T)
— Operator is expected to be associative and commutative
Reduction operation: A >> foo() returns value of type T, where
— A'is an array over base type T

— A>>foo() performs reductions over all elements of A to obtain a
single result of type T

Scan operation: A || foo() returns array, B, of base type T, where
- B[i] = AJO..i]>>foo()

[
IH|
il
Iy



Example of Unconditional Atomic Sections
SPECjbb2000: Java vs. X10 versions

X10 version (w/ atomic section):

Java version:

_ _ public class Stock extends Entity {...
public class Stock extends Entity {...

private float ytd: private float ytd,;

orivate short orderCount: private short orderCount; ...

public synchronized void public atomic void

incrementYTD(short ol _quantity){ ... incrementYTD(short ol_quantity){ ...
ytd += ol_quantity; ...}... ytd += ol_quantity; ...}...
public synchronized void public atomic void
incrementOrderCount(){ ... incrementOrderCount(){ ...
Layout of ++orderCount; ...} ... ++orderCount; ...} ...
a “Stock” }
object }
A% I These two methods cannot be With atomic sections, X10
\ s |- executed simultaneously mockl implementation can
< IorderCount because they use the same VA e choose to execute these
lock orderCountf---. two methods in parallel

i
il
iy

7 Atomic Sections are deadlock-free!
p ERCS . sarkar CDP 2004 Workshop 19

[
A
T
il“



Example of Conditional Atomic Section

e Conditional Atomic Sections are similar to Conditional Critical
Regions (CCRs)

— Powerful construct, misuse can lead to deadlock
— Need to identify special cases that are most useful in practice

class OneBuffer<value T> {
?Box<T> datum = null;
public void send(T v) {
when (this.datum == null) {
this.datum := new Box<T>(datum);
}
}

public T receive() {
when (this.datum !=null) {
T v =datum.datum;
value = null;
return v,

:

@GS V. sarkar CDP 2004 Workshop 20

[Jown]|
Il
nll
iy

I
lin

@



Memory Model

« X10 focus is on data-race-free applications

* Programmer uses atomic / clock / force operations to
avoid data races

— X10 programming environment also includes data
race detection tool
« Weak memory model for defining consistency of
unsynchronized accesses
— Based on Location Consistency memory mode

— Akin to weak ordering guarantees of messages in
MPI

LA
g

JHEES ===z
p =

@S v. sarkar CDP 2004 Workshop 21 ==E=



X10 Type System: Features relevant

to Comeiler OEtimization

« Unified type system
— All data items are objects

 Value classes and clocked final
— Immutable --- no updatable fields

— However, target of object reference in a field can be mutable (if it's
not itself a value class instance)

« Type parameters
— Places, distributions,

 Nullable

— All types are non-null by default, need to explicitly declare a variable
as nullable

- For any type T, the type ?T (read: “nullable T") contains all the values
of type T, and a special null value, unless T already contains null.

« Support for both rectangular multidimensional arrays (matrices) and
nested arrays

|
il
)

p V. Sarkar CDP 2004 Workshop 22



X10 Compilation and Runtime Environment

X10 source code

l

X10 Front end

Hardware l

parameters X10 static
» high-level X10 Classfiles

optimizgr

: |

X10 Virtual Machine
w/ PERCS CPO
Profile (;'S
Feedback Hardware
A 4 param eters

Clusters (scale-out)

SMP

Multiple cores on a chip

| Coprocessors (SPUs)

SMTs

Vector (VMX)

Aro
p V. Sarkar - D 23

s

|
il
iy

[jom]

@



Relating optimizations for past programming

paradigms to X10 optimizations
S

place

Programming Activities Storage classes Important optimizations

paradigm

Message- Single activity per Place local Message aggregation, optimization of

passing e.g., place barriers & reductions

MPI

Data parallel Single global Partitioned global SPMDization, synchronization &

e.g., HPF program communication optimizations

PGAS e.g., Single activity per Partitioned global, place local | Localization, SPMDization,

Titanium, UPC place synchronization & communication
optimizations

DSMe.g., Multiple Partitioned global, activity Data layout optimizations, page locality

TreadMarks local optimizations

NUMA Single activity per Partitioned global, activity Data distribution, synchronization &

local

communication optimizations

Co-processor
e.g., STI Cell

Single activity per
place

Partitioned-global, place-local

Data communication, consistency, &
synchronization optimizations

Futures / active
messages

Multiple

Place-local, activity local

Message aggregation, synchronization
optimization

Full X10

Multiple activities in
multiple places

Partitioned-global, place-local,
activity-local

All of the above

(A%

V. Sarkar

CDP 2004 Workshop

24 — — —  —



Some Challenges in Optimization
of X10 programs

 Analysis and optimization of explicitly parallel programs

— Proposed approach: use Parallel Program Graph (PPG)
representation

« Analysis and optimization of remote data accesses

— Proposed approach: perform data access aggregation and elimination
using Array SSA framework

« Optimized implementation of Atomic Sections
— Simple cases that can be supported by hardware e.g., reductions
— Analyzable atomic sections
— General case

 Load-balancing
— Dynamic, adaptive migration of place s

« Continuous optimization
— Efficient implementation of scan/reduce

- Efficient invocation of components in foreign languages
- C, Fortran

PGS $abage colection sggsayiplsplaces LI




-
p > 4%

X10 Status and Plans

« Draft Language Design Report available internally w/ set of sample
programs

 Implementation begun on Prototype #1 for 1/2005

- Functional reference implementation of language subset, not
optimized for performance

— Support for calls to single-threaded native code (C, Fortran)

« Productivity experiments planned for 7/2005
— Use prototype #1 to compare X10 w/ MPI, UPC

- Revise language based on feedback from productivity
experiments

 Prototype #2 planned for 12/2005

- Includes design & prototype implementation of selected
optimizations for parallelism, synchronization and locality in X10
programs

— Revise language based on feedback from design evaluation
 Next phase of PERCS project planned for 7/2006 — 6/2010 timeframe

@S . sarkar CDP 2004 Workshop 26

(A%

|
il
Iy



Conclusions and Future Work
T

« Future Large-scale Parallel Systems will be accompanied by
severe productivity and performance challenges
« Summarized X10 language approach in PERCS project, with a
focus on next steps:
— Use applications and productivity studies to refine design
decisions in X10
— Prototype solutions to address implementation challenges

*  Future work (beyond 2005)
— Explore integration of X10 with other language efforts in IBM
XML (XJ), BPEL, ...

—  Community effort to build consensus on standardized “high
productivity” languages for HPC systems in the 2010

timeframe

h47 g =
s ol 7 = == ===

PERCS v. sarkar CDP 2004 Workshop 27 IR



