
abc - the Aspect Bench Compiler for AspectJ

McGill Oxford Aarhus

Laurie Hendren Oege de Moor Aske Simon
Jennifer Lhoták Ganesh Sittampalam Christensen
Ondřej Lhoták Sascha Kuzins
Chris Goard Pavel Avgustinov

Julian Tibble
Damien Sereni

– p.1/29

Outline

AspectJ introduction for compiler writers

Challenges of building a compiler for AspectJ

abc as an extensible and optimizing compiler

How abc tackles performance issues

Future Work

– p.2/29

AspectJ Programming Language

a seamless aspect-oriented extension to Java

originally developed at Xerox PARC

tools for AspectJ now developed and supported by
the Eclipse AspectJ project

ajc compiler for the AspectJ language
(http://eclipse.org/aspectj)

▽ – p.3/29

AspectJ Programming Language

a seamless aspect-oriented extension to Java

originally developed at Xerox PARC

tools for AspectJ now developed and supported by
the Eclipse AspectJ project

ajc compiler for the AspectJ language
(http://eclipse.org/aspectj)

abc, the Aspect Bench Compiler , is a new,
alternative compiler for the AspectJ language,
designed for extensibility and optimization
(http://aspectbench.org)

– p.3/29

AspectJ Introduction

introduce a small Java program, a little expression
interpreter

illustrate three main uses of AspectJ by applying it to
this small example

aspects for additional static checking at compile
time
adding fields/classes/constructors to classes via
aspects
dynamic aspects for applying advice (code) at
specified run-time events

– p.4/29

Example Java Program - expression interpreter

Consider a small interpreter for an expression language,
consisting of:

SableCC-generated files for scanner, parser and tree
utilities in four packages: parser , lexer , node and
analysis .

main driver class, tiny/Main.java , which reads
the input, invokes parser, evaluates resulting
expression tree, prints input expression and result.

expression evaluator class, tiny/Evaluator.java

> java tiny.Main
Type in a tiny exp followed by Ctrl-d :
3 + 4 * 6 - 7
The result of evaluating: 3 + 4 * 6 - 7
is: 20

– p.5/29

AspectJ for Static (compile-time) Checking

Programmer specifies a pattern describing a static
program property to look for and a string with the
warning text.

An AspectJ compiler must check where the pattern
matches in the program, and issue a compile-time
warning (string) for each match.

public aspect StyleChecker {
declare warning :

set(!final !private * *) &&
!withincode(void set * (..)) :
"Recommend use of a set method.";

}

– p.6/29

Using the StyleChecker aspect

The compilation:

abc StyleChecker.java * / * .java

produces the compile-time output:

parser/TokenIndex.java:34:
Warning -- Recommend use of a set method.

index = 4;
ˆ-------ˆ

...

– p.7/29

AspectJ for Intertype Declarations

Programmer specifies, in a separate aspect, new
fields/methods/constructors to be added to existing
classes/interfaces.

An AspectJ compiler must weave in code to
implement these additions.

Other classes in the application can use the added
fields/members/constructors.

In our example, we can use an aspect to add fields
and accessors to the code generated by SableCC,
without touching the generated classes.

– p.8/29

Intertype Declarations - example

All AST nodes generated by SableCC are subclasses of
node.Node .
We must not directly modify the code generated by
SableCC.

public aspect AddValue {
int node.Node. value; // a new field

public void node.Node. setValue(int v)
{ value = v; }

public int node.Node. getValue()
{ return value; }

}

– p.9/29

Using the AddValue aspect

abc AddValue.java * / * .java

where, the evaluator visitor can be now written using the
value field to store intermediate values.

public void outAMinusExp(AMinusExp n)
{ n.setValue(n.getExp().getValue() -

n.getFactor().getValue());
}

instead of the “old" way of storing intermediate values in a
hash table. The aspect-oriented method is more efficient
because fewer objects are created during the evaluation.

– p.10/29

AspectJ for Dynamic Advice

Programmer specifies a pattern describing run time
events, and some extra code (advice) to execute
before/after/around those events.

An AspectJ Compiler must weave the advice into the
base program for all potentially matching events.

▽ – p.11/29

AspectJ for Dynamic Advice

Programmer specifies a pattern describing run time
events, and some extra code (advice) to execute
before/after/around those events.

An AspectJ Compiler must weave the advice into the
base program for all potentially matching events.

Since events can depend on dynamic information:
some execution state may need to be tracked, and
some advice may be conditional on the result of a
dynamic residue test.

– p.11/29

Dynamic Advice - counting runtime events

public aspect CountEvalAllocs {
int allocs; // counter

before () : call(* * .eval(..)) &&
within(* .Main)

{ allocs = 0; }

after () : call(* * .eval(..)) &&
within(* .Main)

{ System.out.println(
" *** Eval allocs: " + allocs); }

before () : call(* .new(..)) &&
cflow(call(* * .eval(..)))

{ allocs ++; }
}

– p.12/29

Using the CountEvalAllocs aspect

Using the interpreter with the
CountEvalAllocs aspect included.

The result of evaluating:
3 + 4 * 6 + 9 / 3
*** Eval allocations: 17
is: 30

Using the interpreter with the
CountEvalAllocs aspect, and the improved
evaluator enabled by the addValue aspect.

The result of evaluating:
3 + 4 * 6 + 9 / 3
*** Eval allocations: 2
is: 30

– p.13/29

Dynamic Advice - example 2

public aspect ExtraParens {
String around() :

execution(String node.AMultFactor.toString()) ||
execution(String node.ADivFactor.toString())
{ String normal = proceed();

return "(" + normal + ")";
}

}

Compile: abc ExtraParens.java * / * .java
Run: java tiny.Main
The result of evaluating:
The result of evaluating:
3 + (4 * 6) + (9 / 3)
is: 30

– p.14/29

Recap: uses of AspectJ for example

Static (compile-time) check: Check that accessor
methods are always used to set non-private non-final
fields.

Intertype declaration: Add a new field and
associated accessor methods to the
SableCC-generated node.Node class.

Dynamic advice:
Count the number of allocations peformed during
a an expression evaluation.
Intercept calls to toString() for factors and add
surrounding parentheses, if they are not already
there.

– p.15/29

Challenges: front-end

AspectJ-specific language features, including
relatively complex pointcut (patterns) language.

Intertype declarations, need to be able to extend the
type system in non-trivial ways.

▽ – p.16/29

Challenges: front-end

AspectJ-specific language features, including
relatively complex pointcut (patterns) language.

Intertype declarations, need to be able to extend the
type system in non-trivial ways.

abc’s solution:
use Polyglot, an extensible framework for Java
compilers (Cornell)
express AspectJ language via LALR(1) grammar:
base Java grammar + additional grammar rules
for AspectJ
use Polyglot’s extension mechanisms to override
key points in type system to handle intertype
declarations.

– p.16/29

Challenges: back-end

Need to handle input from .java and .class files.

AspectJ compilers need additional modules:
matcher, weaver

need to produce efficient woven code (.class files)

▽ – p.17/29

Challenges: back-end

Need to handle input from .java and .class files.

AspectJ compilers need additional modules:
matcher, weaver

need to produce efficient woven code (.class files)

abc’s solution:
clean design of matcher and weaver using a
simplified and factored pointcut language
use Soot, which provides Jimple IR (typed
3-addr), standard optimizations, and an
optimization framework

– p.17/29

The abc approach

abc has been designed to be an:

extensible compiler:
easy to implement language extensions
build on two extensible frameworks, Polyglot and
Soot
see AOSD 2005 submission at
http://aspectbench.org/techreports

▽ – p.18/29

The abc approach

abc has been designed to be an:

extensible compiler:
easy to implement language extensions
build on two extensible frameworks, Polyglot and
Soot
see AOSD 2005 submission at
http://aspectbench.org/techreports

optimizing compiler:
convenient IR
good weaving strategies
standard compiler optimizations
AspectJ-specific optimizations

– p.18/29

Does the weaving strategy matter?

Studied the code produced by ajc by tagging
instructions that are introduced by the ajc weaver
and using *J tool to measure dynamic metrics.
(OOPSLA 2004)

When there is not a lot of overhead:
very simple before and after advice
when the aspect only applies to a small, cold, part
of the program
when the aspect body is a large computation

When there can be overhead:
frequent (hot) aspects with small bodies
frequent (hot) use of cflow and/or around advice

– p.19/29

How abc reduces overhead

use Soot in back-end, so can optimize generated
code

new around weaving strategy

new cflow implementation

– p.20/29

Reducing overhead by using Soot

the abc backend uses Jimple, a typed 3-address IR
(ajc use stack-based Java bytecode)

abc weaver does not need to save implicit values
on the stack, leads to fewer locals in generated
code
abc weaver can use def-use and variable types to
generate better code

abc uses the Soot basic optimizations to clean up
generated code

abc can use Soots intra- and inter-procedural
analysis frameworks to implement AspectJ-specific
optimizations.

– p.21/29

Weaving in bytecode (ajc)

public int foo(int x, int y, int z)
0: aload 0
1: iload 1
2: iload 2
3: iload 3
4: istore %4
6: istore %5
8: istore %6
10: astore %7
12: invokestatic A.aspectOf ()LA; (52)
15: aload %7
17: invokevirtual A.ajc$before$A$124 (LFoo;)V
20: aload %7
22: iload %6
24: iload %5
26: iload %4
28: invokevirtual Foo.bar (III)I (37)
31: ireturn

– p.22/29

Weaving in Jimple (abc)

public int foo(int, int, int)
{ Foo this;

int x, y, z, $i0;
A theAspect;

this := @this;
x := @parameter0;
y := @parameter1;
z := @parameter2;
theAspect = A.aspectOf();
theAspect.before$0(this);
$i0 = this.bar(x, y, z);
return $i0;

}

– p.23/29

Sascha’s strategy for around weaving

ajc has two strategies, inlining around advice, and
using closures

the inlining method will work well for small advice
bodies, or advice the applies in few places
the closure strategy is very inefficient, but must be
used in some situations (i.e. when an advice
applies to itself)

abc has another strategy
(http://aspectbench.org/theses):

doesn’t inline (no code bloat), but uses generic
advice methods
replaces polymorphism with lookup tables
avoids object creation
no closures in the general case
uses closures only at specific points, degrades
gracefully

– p.24/29

Improving the implementation of cflow
to track if a runtime computation is within the cflow of
some event, the compiler has to generate code to track
when that event begins and when it ends

in general the event may have some state, but most
often it does not

ajc uses a stack of states that must be thread-safe
abc improves upon this by:

recognizing when there is no state and using a
counter instead of a stack of empty states
recognizing when counters (or stacks) are
equivalent and can be shared
only peforming thread-specific operations once per
method body
will soon use interprocedural analysis to determine
if the cflow can be decided statically (and thus no
runtime book-keeping in necessary)

– p.25/29

Peformance Improvement(1)

speedup (client JIT)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00
sp

ee
du

p
(x

 fa
st

er
)

ajc/ajc(soot)
ajc/abc

ajc/ajc(soot) 1.00 1.00 1.01 1.02

ajc/abc 1.00 7.45 1.04 4.65

DCM figure prod_lines null_check

– p.26/29

Peformance Improvement(2)

Speedup (Interpreter)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00
sp

ee
du

p
(x

 fa
st

er
)

ajc/ajc(soot)
ajc/abc

ajc/ajc(soot) 1.01 1.02 1.01 1.06

ajc/abc 1.00 6.74 1.03 2.61

DCM figure prod_lines null_check

– p.27/29

Peformance Improvement(3)

Killer Benchmark (Law of Demeter)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00
sp

ee
du

p
(x

 fa
st

er
)

ajc/ajc(soot)
ajc/abc

ajc/ajc(soot) 8.56 2.07

ajc/abc 70.37 45.37

LOD (JIT) LOD (inter.)

– p.28/29

Conclusions

AspectJ is very useful for many tasks - illustrated with
tiny interpreter

abc is a new compiler for AspectJ which is extensible
and optimizing.

You can use abc as an alternative AspectJ compiler,
or you can use it for research into language
extensions and new optimizations.

It is worth thinking about AspectJ-specific
optimizations, and abc has already implemented
some of these.

Lots more work by the abc team to come ... we
welcome users!

http://aspectbench.org
– p.29/29

	abc - the aspectbenchcompiler for AspectJ
	Outline
	AspectJ Programming Language
	AspectJ Programming Language

	AspectJ Introduction
	Example Java Program - expression interpreter
	AspectJ for Static (compile-time)
Checking
	Using the 	exttt {	extbf {StyleChecker}} aspect
	AspectJ for Intertype Declarations
	Intertype Declarations - example
	Using the 	exttt {AddValue} aspect
	AspectJ for Dynamic Advice
	AspectJ for Dynamic Advice

	Dynamic Advice - counting runtime events
	Using the 	exttt {CountEvalAllocs} aspect
	Dynamic Advice - example 2
	Recap: uses of AspectJ for example
	Challenges: front-end
	Challenges: front-end

	Challenges: back-end
	Challenges: back-end

	The abc approach
	The abc approach

	Does the weaving strategy matter?
	How abc reduces overhead
	Reducing overhead by using Soot
	Weaving in bytecode (ajc)
	Weaving in Jimple (abc)
	Sascha's strategy for around weaving
	Improving the implementation of cflow
	Peformance Improvement(1)
	Peformance Improvement(2)
	Peformance Improvement(3)
	Conclusions

