Interprocedural Strength Reduction

Shimin Cui

Roch Archambault
Raul Silvera
Yaoqging Gao

IBM Toronto Software Lab




Outline

" Introduction
= Examples
= Algorithm in TPO

= Summary




Reduction in Strength

= Replace costly computations with less expensive ones.
= Example of operator strength reduction.

« Shift, add instead of multiply or divide

e 16*X = xx<< 4

= Well known and widely used in compilers — largely
restricted to optimize code within a single procedure.




Interprocedural Strength Reduction - Overview

A method to reduce the costly computations in strength
interprocedurally to improve the code performance.

Precompute costly computations in less frequently
executed locations.

Replace costly computations with less expensive ones.
Reduce size of global objects referenced repeatedly in
loops.

Provide opportunities for further optimizations.
Implemented in the link path of IBM product compiler.




Example 1: Global Scalars

= Pre-compute costly computations on global scalar variables.




Example 1 (cont.)

= Pre-compute costly computations in less frequently executed
locations.




Example 1 (cont.)

= Replace costly computations with less expensive computations.




Example 2: Global Objects

= Pre-compute costly computations on global arrays and dynamic
objects.




Example 2 (cont.)

= Reduce size of global objects referenced repeatedly in loops to
Improve the data cache performance.




Algorithm in IPA Link Phase
= Only supported at -O5 (IPA level 2).




e e

Gather Information

= A global variable is considered only when all of its
possible definition locations are known.

« Aliases of global objects

« Size of the global objects (static or runtime profile)

= |dentify the costly computations which operates only on
global variables and collect execution cost related
information.

« Costly computation

« Computation that can be mapped to an object reference of
smaller size data type

= |dentify the stores where global variables are modified
and collect execution cost related information.




Cost analysis

= Select the candidate computations for reduction in
strength based on the cost analysis for the whole
program.

« The total cost for both computations and precomputations

- The total size of the global objects
= Create a global variable for each selected computation.
« Initialization of the global variable

« Indexing or indirect symbols

« Aliasing symbols




Code Transformation

= Replace the candidate computation by a weaker
computation.
« Load of the created global variable
- direct, indirect, indexing
« Multiply-shift sequence using magic number

= |nsert the store of global variables (and their aliases) at
definition points of all the variables used in the selected
computations.

« Store operation
« Memory allocation

« Pointer assignment




Summary

Precompute costly computations in less frequently
executed place

« To reduce total number of costly computation
Replace costly computations with less expensive ones
« To reduce the strength of operation
Reduce size of global objects referenced repeatedly in
loops
« To improve data cache utilization




Questions?




