The Use of Traces for
Inlining in Java Programs

Borys J. Bradel
Tarek S. Abdelrahman

Edward S. Rogers Sr.Department of Electrical
and Computer Engineering

University of Toronto
Toronto, Ontario, Canada




Introduction

® Feedback-directed systems
provide information to a compiler
regarding program behaviour

® Examples:
Jikes RVM [AFG+00]
Open Runtime Platform [Mic03]

Source Code

A 4
Compiler

A 4
Program

Feedback




Work Overview o

® Explore whether traces are useful in offline
feedback directed systems

® Create trace collection system for Jikes

® Use traces to guide Jikes’s built in optimizing
compiler

Help with a single optimization, inlining
Improves execution time



Outline

® Background

® |mplementation
® Results

® Related work

® Conclusion




Trace Definition

® A trace is a frequently
executed sequence of
unique basic blocks or
Instructions

public static int foo() {
int a=0;
for (int i=0;i<5;i++)
a++;

’

return a;

}

o000
o0
®
BO a=0
i=0
goto B2
' Trace 1
v
B1 a+=i
I++
B2 | if (i<5) goto 51\/
B3 return a




Traces and Optimization o

® Traces may offer a better opportunity for
optimization:
Enable inter-procedural analysis
Reduce the amount of instructions optimized

Simplify the control flow graph, allowing for more
optimization



Multiple Methods

® |nter-procedural analysis

without an additional
framework

® |ncrease possibility of
optimization
B1,A1,B2 can be

simplified to two
Instructions

a+=(5+i)
I++

BO

B1

AT

B2

cal Ivg(i)

v

t=5+i
return t

Y
t=returned value

a+=t
I++

v

B3

\ 4

B4

Trace 1



Fewer Instructions

® Fewer Instructions to
optimize

® May allow for extra
optimization
If know that B3 is

executed then know
that t=5

v

B2: t=f(...)

BO
Trace 1
B1
v
B3: t=5
v v
B4

B6




Trace Exits

® Traces usually contain
many basic blocks

® Traces may not
execute completely

Unlike basic blocks

Trace 1

B6




000
000
o L X
Trace Collection System o
® Monitor program execution
® Record traces BO a=0
® Start traces at frequently it=082
occurring events 900 =
Backward branches i
Trace exits B1 ar=
i++
Returns
® Stop at backward branches [ |
and trace starts B2 | if (i<5) goto 51\/
® Captures frequently executed

loops and functions '
B3 return a

10



Jikes

Baseline
Compiler

A 4

Program

Adaptive
System

A

Optimizing
Compiler

A

11



Jikes and our TCS

Baseline
Compiler

A 4

Program

Inform TCS

Optimizing
Compiler

TCS

Adaptive
System

A 4

Trace
Information

12



Jikes — Second Phase

Baseline
Compiler

A 4

Program

Adaptive
System

A

Optimizing
Compiler

y

A

y

A

Trace
Information

13



Inlining and Traces

® Traces are executed
frequently

® Therefore invocations on
traces should be inlined

Reduce invocation
overhead

Allow for more
opportunities for
optimization
® May lead to large code
expansion

a.Ca

11 b()

method a()

method b()

14



Code Expansion Control

® There are ways to control

N
® |nli

ine expansion
ine sequences

[F

G03,BB04]

® Selectively inlining:

What if compile method a()?
W hat if compile method b()??

a.Ca

11 b()

b:ca

il c()

15



Code Expansion Control

® Compile method a()

® |nline method
method a()
\

s b() and c()

® Compile method b()

/ cee

method b()

® No inlining

method b()

invoke c()

method c()

method c()

16



Results

® Provide inline information to Jikes based on
previous executions

® Compare our approach to two others:

Inline information provided by the Adaptive system

of Jikes

A greedy algorithm based on work by Arnold et al.

[Arn00]

® Evaluate two approaches: Justin Time and
Ahead of Time

® Measure overhead of system

17



JIT Inlining — Execution Time

Normalized Time

1.2

0.8 -
0.6 -
0.4 -
0.2 -

201 202 209 213 222 228 2al 2a2 2a3 2a4 235 mean

n AT TS B Geeey/ 033 | oA

18



JIT Inlining — Compilation Time

Normalized Time

N
Ul

N

—
Ul

—

o
Ul

o

201 202 209 213 222 228 2al 2a2 2a3 2a4 2a5 mean

B Adptihea (25 B Geesey/OSs || Tam (O

19



JIT Inlining — Code Expansion 22

2.5

N2

o

T 1.5

()

N (

= 1 -

=

o

Sos 'R B 1 B B B BE g gin e e
O 0 70T /70T 70 " " 70" T

201 202 209 213 222 228 2al 2a2 2a3 2a4 2a5 mean

n Asiptihve13m Geee) 258 oA

20




AOT Inlining — Execution Time oo

1.2

Normalized Time

2a3 2a4 2a5 mean

-
0.8 -
0.6 -
0.4 |
0.2 -
0.

= Adaptive 29.3s m Trace 21.8s

21



AOT Inlining — Compilation Time

Normalized Time

3.5

2.5

1.5

0.5 -

3

3

E

201

202

209 222

228

2al

2a2

2a3

2a4

2a5 mean

n ApbeE

22



Overhead °sst

N

—

Normalized Tinr
Ul

o
Ul
|
\
|
|
|
|
|
|

o

201 202 209 213 222 228 2al

2a2 2a3 2a4 2a5 mean

L

T Be=/A 6 B9y | Beerad CS 126

23



Related Work oo

® Arnold et al. [Arn00]
Feedback-directed inlining in Java
Collected edge counts at method invocations

Used a greedy algorithm to select inlines that
maximize invocations relative to code expansion

® Dynamo [BDB99]
Trace collection system
PA-RISC architecture
Assembly Instructions
Compiled traces

24



Conclusions o

® Traces are beneficial for inlining:

Decreased execution time compared to one
approach

Decrease competitive with another approach
Increases compilation time and code size
® A potential avenue of future research

25



Future Work &

® Different trace collection strategies

® Trace based compilation and execution

® Reduction of code size

® Application of traces to other optimizations

® Usage of an online feedback directed system

26



References °

e [MSDO00] Matthew Arnold, Stephen Fink, David Grove, Michael
Hind, and Peter F. Sweeney. Adaptive optimization in the
Jalapeno JVM. ACM SIGPLAN Notices, 35(10):47-65, 2000.

® [Mic03] Michael Cierniak et al. The open runtime platform: A
flexible high-performance managed runtime environment. Intel
Technology Journal, February 2003.

® [HGO03] Kim Hazelwood and David Grove. Adaptive online context-
sensitive inlining. International Symposium on Code Generation
and Optimization, p 253-264, 2003.

e [BBO04] Bradel, B.J.: The use of traces in optimization. Master’s
thesis, University of Toronto (2004).

® [Arn00] Matthew Arnold et al: A comparative study of static and
profile-based heuristics for inlining. SIGPLAN Workshop on
Dynamic and Adaptive Compilation and Optimization. (2000) 52-
64.

e [BDB99] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjla7
Transparent dynamic optimization: The design and |mplementat|on
of dvhamo. HP | aboratories Technical Report HPlL 19909 —78



AOT — Compilation Time (Wall Time)

N
Ul

N

—_
ol

Normalized Time

o
o wun =
|
|

2001 202 209 222 228 2al1 232 2a3 2a4 2a5 mean

n A7 Sa [ E3=

28



