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Introduction

® Feedback-directed systems
provide information to a compiler
regarding program behaviour

® Examples:
Jikes RVM [AFG+00]
Open Runtime Platform [Mic03]
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Work Overview o

® Explore whether traces are useful in offline
feedback directed systems

® Create trace collection system for Jikes

® Use traces to guide Jikes’s built in optimizing
compiler

Help with a single optimization, inlining
Improves execution time



Outline

® Background

® |mplementation
® Results

® Related work

® Conclusion




Trace Definition

® A trace is a frequently
executed sequence of
unique basic blocks or
Instructions

public static int foo() {
int a=0;
for (int i=0;i<5;i++)
a++;

’

return a;

}

o000
o0
®
BO a=0
i=0
goto B2
' Trace 1
v
B1 a+=i
I++
B2 | if (i<5) goto 51\/
B3 return a




Traces and Optimization o

® Traces may offer a better opportunity for
optimization:
Enable inter-procedural analysis
Reduce the amount of instructions optimized

Simplify the control flow graph, allowing for more
optimization



Multiple Methods

® |nter-procedural analysis

without an additional
framework

® |ncrease possibility of
optimization
B1,A1,B2 can be

simplified to two
Instructions

a+=(5+i)
I++

BO

B1

AT

B2

cal Ivg(i)

v

t=5+i
return t

Y
t=returned value

a+=t
I++

v

B3

\ 4

B4

Trace 1



Fewer Instructions

® Fewer Instructions to
optimize

® May allow for extra
optimization
If know that B3 is

executed then know
that t=5

v

B2: t=f(...)

BO
Trace 1
B1
v
B3: t=5
v v
B4

B6




Trace Exits

® Traces usually contain
many basic blocks

® Traces may not
execute completely

Unlike basic blocks

Trace 1

B6
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Trace Collection System o
® Monitor program execution
® Record traces BO a=0
® Start traces at frequently it=082
occurring events 900 =
Backward branches i
Trace exits B1 ar=
i++
Returns
® Stop at backward branches [ |
and trace starts B2 | if (i<5) goto 51\/
® Captures frequently executed

loops and functions '
B3 return a
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Jikes
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Jikes and our TCS
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Jikes — Second Phase
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Inlining and Traces

® Traces are executed
frequently

® Therefore invocations on
traces should be inlined

Reduce invocation
overhead

Allow for more
opportunities for
optimization
® May lead to large code
expansion

a.Ca

11 b()

method a()

method b()
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Code Expansion Control

® There are ways to control

N
® |nli

ine expansion
ine sequences

[F

G03,BB04]

® Selectively inlining:

What if compile method a()?
W hat if compile method b()??

a.Ca

11 b()

b:ca

il c()
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Code Expansion Control

® Compile method a()

® |nline method
method a()
\

s b() and c()

® Compile method b()

/ cee

method b()

® No inlining

method b()

invoke c()

method c()

method c()
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Results

® Provide inline information to Jikes based on
previous executions

® Compare our approach to two others:

Inline information provided by the Adaptive system

of Jikes

A greedy algorithm based on work by Arnold et al.

[Arn00]

® Evaluate two approaches: Justin Time and
Ahead of Time

® Measure overhead of system
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JIT Inlining — Execution Time
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JIT Inlining — Compilation Time

Normalized Time
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JIT Inlining — Code Expansion 22
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AOT Inlining — Execution Time oo
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AOT Inlining — Compilation Time

Normalized Time
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Overhead °sst
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Related Work oo

® Arnold et al. [Arn00]
Feedback-directed inlining in Java
Collected edge counts at method invocations

Used a greedy algorithm to select inlines that
maximize invocations relative to code expansion

® Dynamo [BDB99]
Trace collection system
PA-RISC architecture
Assembly Instructions
Compiled traces
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Conclusions o

® Traces are beneficial for inlining:

Decreased execution time compared to one
approach

Decrease competitive with another approach
Increases compilation time and code size
® A potential avenue of future research
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Future Work &

® Different trace collection strategies

® Trace based compilation and execution

® Reduction of code size

® Application of traces to other optimizations

® Usage of an online feedback directed system
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