
The Use of Traces for
Inlining in Java Programs

Borys J. Bradel

Tarek S. Abdelrahman

Edward S. Rogers Sr.Department of Electrical
and Computer Engineering

University of Toronto

Toronto, Ontario, Canada

2

Introduction

 Feedback-directed systems
provide information to a compiler
regarding program behaviour

 Examples:
 Jikes RVM [AFG+00]
 Open Runtime Platform [Mic03]

Source Code

Compiler

Program

Feedback

3

Work Overview

 Explore whether traces are useful in offline
feedback directed systems

 Create trace collection system for Jikes
 Use traces to guide Jikes’s built in optimizing

compiler
 Help with a single optimization, inlining
 Improves execution time

4

Outline

 Background

 Implementation

 Results

 Related work

 Conclusion

5

Trace Definition

 A trace is a frequently
executed sequence of
unique basic blocks or
instructions

a=0
i=0

goto B2

a+=i
i++

if (i<5) goto B1

return a

B0

B1

B2

B3

Trace 1

public static int foo() {

 int a=0;

 for (int i=0;i<5;i++)

 a++;

 return a;

}

6

Traces and Optimization

 Traces may offer a better opportunity for
optimization:
 Enable inter-procedural analysis
 Reduce the amount of instructions optimized
 Simplify the control flow graph, allowing for more

optimization

7

Multiple Methods

 Inter-procedural analysis
without an additional
framework

 Increase possibility of
optimization
 B1,A1,B2 can be

simplified to two
instructions
 a+=(5+i)
 i++

B0

t=returned value
a+=t
i++

B3

B4

B1 call g(i)

B2

t=5+i
return t

A1

Trace 1

8

Fewer Instructions

 Fewer instructions to
optimize

 May allow for extra
optimization
 If know that B3 is

executed then know
that t=5

B0

B6

B1

B5

B6

B2: t=f(...)

Trace 1

B3: t=5

B4

9

Trace Exits

 Traces usually contain
many basic blocks

 Traces may not
execute completely
 Unlike basic blocks

B0

B6

B1

B5

B6

B2

Trace 1

B3

B4

10

Trace Collection System

 Monitor program execution
 Record traces
 Start traces at frequently

occurring events
 Backward branches
 Trace exits
 Returns

 Stop at backward branches
and trace starts

 Captures frequently executed
loops and functions

a=0
i=0

goto B2

a+=i
i++

if (i<5) goto B1

return a

B0

B1

B2

B3

Trace 1

11

Jikes

Baseline
Compiler

Optimizing
Compiler

Program

Adaptive
System

12

Jikes and our TCS

Baseline
Compiler

Optimizing
Compiler

Program

Adaptive
System

TCS

Inform TCS

Trace
Information

13

Jikes – Second Phase

Baseline
Compiler

Optimizing
Compiler

Program

Adaptive
System

Trace
Information

14

Inlining and Traces

 Traces are executed
frequently

 Therefore invocations on
traces should be inlined
 Reduce invocation

overhead
 Allow for more

opportunities for
optimization

 May lead to large code
expansion

a:call b()

b: …

method a()
…
invoke b()
…

method b()
…

15

Code Expansion Control

 There are ways to control
inline expansion

 Inline sequences
[HG03,BB04]

 Selectively inlining:
 What if compile method a()?
 What if compile method b()?

a:call b()

b:call c()

c:…

16

Code Expansion Control

 Compile method a()
 Inline methods b() and c()

 Compile method b()
 No inlining

method a()
…
invoke b()
…

method c()
…

method b()
…
invoke c()
…

method b()
…
invoke c()
…

method c()
…

17

Results

 Provide inline information to Jikes based on
previous executions

 Compare our approach to two others:
 Inline information provided by the Adaptive system

of Jikes
 A greedy algorithm based on work by Arnold et al.

[Arn00]
 Evaluate two approaches: Just in Time and

Ahead of Time
 Measure overhead of system

18

JIT Inlining – Execution Time

0

0.2

0.4

0.6

0.8

1

1.2

201 202 209 213 222 228 2a1 2a2 2a3 2a4 2a5 mean

N
o

rm
al

iz
ed

 T
im

e

Adaptive 25.6s Greedy 23.3s Trace 22.7s

0

19

JIT Inlining – Compilation Time

0

0.5

1

1.5

2

2.5

201 202 209 213 222 228 2a1 2a2 2a3 2a4 2a5 mean

N
o

rm
al

iz
ed

 T
im

e

Adaptive 0.52s Greedy 0.61s Trace 0.69s

0

20

JIT Inlining – Code Expansion

0

0.5

1

1.5

2

2.5

201 202 209 213 222 228 2a1 2a2 2a3 2a4 2a5 mean

N
o

rm
al

iz
ed

 S
iz

e

Adaptive 21.3kb Greedy 22.8kb Trace 27.7kb

0

21

AOT Inlining – Execution Time

0

0.2

0.4

0.6

0.8

1

1.2

201 202 209 222 228 2a1 2a2 2a3 2a4 2a5 mean

N
o

rm
al

iz
ed

 T
im

e

Adaptive 29.3s Trace 21.8s

0

22

AOT Inlining – Compilation Time

0

0.5

1

1.5

2

2.5

3

3.5

4

201 202 209 222 228 2a1 2a2 2a3 2a4 2a5 mean

N
o

rm
al

iz
ed

 T
im

e

Adaptive 3.8s Trace 5.6s

0

23

Overhead

0

0.5

1

1.5

2

2.5

3

201 202 209 213 222 228 2a1 2a2 2a3 2a4 2a5 mean

N
o

rm
a
li

z
e
d

 T
im

e

Base 77s Base+ 90s Base+ and TCS 174s

0

24

Related Work

 Arnold et al. [Arn00]
 Feedback-directed inlining in Java
 Collected edge counts at method invocations
 Used a greedy algorithm to select inlines that

maximize invocations relative to code expansion
 Dynamo [BDB99]
 Trace collection system
 PA-RISC architecture
 Assembly Instructions
 Compiled traces

25

Conclusions

 Traces are beneficial for inlining:
 Decreased execution time compared to one

approach
 Decrease competitive with another approach
 Increases compilation time and code size

 A potential avenue of future research

26

Future Work

 Different trace collection strategies
 Trace based compilation and execution
 Reduction of code size
 Application of traces to other optimizations
 Usage of an online feedback directed system

27

References

 [MSD00] Matthew Arnold, Stephen Fink, David Grove, Michael
Hind, and Peter F. Sweeney. Adaptive optimization in the
Jalapeno JVM. ACM SIGPLAN Notices, 35(10):47-65, 2000.

 [Mic03] Michael Cierniak et al. The open runtime platform: A
flexible high-performance managed runtime environment. Intel
Technology Journal, February 2003.

 [HG03] Kim Hazelwood and David Grove. Adaptive online context-
sensitive inlining. International Symposium on Code Generation
and Optimization, p 253-264, 2003.

 [BB04] Bradel, B.J.: The use of traces in optimization. Master’s
thesis, University of Toronto (2004).

 [Arn00] Matthew Arnold et al: A comparative study of static and
profile-based heuristics for inlining. SIGPLAN Workshop on
Dynamic and Adaptive Compilation and Optimization. (2000) 52-
64.

 [BDB99] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia.
 Transparent dynamic optimization: The design and implementation
of dynamo. HP Laboratories Technical Report HPL1999 –78,
1999.

28

AOT – Compilation Time (Wall Time)

0

0.5

1

1.5

2

2.5

201 202 209 222 228 2a1 2a2 2a3 2a4 2a5 mean

N
o

rm
al

iz
ed

 T
im

e

Adaptive 7.3sTrace 8.2s

0

