Future Challenges In
Dynamic Interprocedural
Analysis and Optimization

Vivek Sarkar

IBM T.J. Watson Research
Center

vsarkar@us.ibm.com

Outline

1. Motivation

7. Dynamic Optimistic Interprocedural Type
Analysis (DOIT)

3. Immutability Analysis Opportunities for
Dynamic IPA

4. Future Challenges

Acknowledgments / References

» “ Dynamic Optimistic Interprocedural Analysis: A
Framework and an Application.”, OOPSLA 2001
conference

« “ Immutabllity Specification and its Applications”
|. Pechtchanski, V. Sarkar, JGI 2002 conference,
CPE 2003 journal

» Discussions with Jikes RVM team members on
Interprocedural extensions to type analysis,
load/store elimination, and register allocation

Motivation

« Interprocedural analysis (IPA) is essential for compiler-
driven performance
« especially when optimizing object-oriented languages
« Static IPA optimizations:
» limited precision due to impact of methods that may not be executed
» scalability limitations in analyzing static “ whole program”
« Dynamic intra-procedural optimizations:

» Significant advances, with inlining, to address interprocedural
optimization opportunities

» reaching point of diminishing returns
o Dynamic IPA:
» Opportunity to get best of both worlds

Dynamic Interprocedural Analysis Scenario

» Ssupports dynamic class loading, adaptive
optimization, optimistic assumptions about
unanalyzed code

Collect/augm
ent

Use IPA information
optimistically
Register verification

Initialize IPA requests for new

Ana!ysis info_rmation method§

VM First execution New Method M, (re) r
Startu of M, classes compiled
P (unoptimized) get loaded with optimization

Invalidation Scenario

» Support for invalidation is necessary, to handle
case when optimistic assumption proves to be

Incorrect

Use IPA information,
making optimistic
assumptions
1

Analyze M,; M, Invalidate
violates optimized
assumptions for compilation of

Ivlk Ivlk

Method M, (re)
compiled
with optimization

New
classes
get loaded

First execution
of new method
M

X

(unoptimized)

Y

Number of methods

Static vs. Dynamic Application Characteristics:
(Number of Methods)

7000 6548
6000

5000
4000
3000
2000

1000
0

B Semi-static (all methods in dynamically loaded classes) m Dynamic

Ratio of Dynamic methods to Semi-static methods ~ 12% - 50%

2

Static vs. Dynamic Application Characteristics:

(Number of Fields containing object references)
1200 1140

1000

800

600

400

Number of fields

200

0

B Semi-static (fields in dynamically loaded classes) m Dynamic

Ratio of Dynamic fields to Semi-static fields ~ 31% - 92%

Outline

1. Motivation

7. Dynamic Optimistic Interprocedural Type
Analysis (DOIT)

3. Immutability Analysis Opportunities for
Dynamic IPA

4. Future Challenges

DOIT Phases

« Initialization
» Analysis
» analyzes each method on first invocation
 Incorporates method summary into Value Graph
» Optimization
o traverses Value Graph to identify types
 Uses type information in optimization
« registers verification actions for type info used
» registers invalidations for optimized method

10

Value Graph

» Node n denotes a set of types, (n)

» Location nodes « Operator nodes
« Local variable » Closure: (*)
« Field « Subscript: ([])
« Array element » Union: (&)

- Constant type e.g., T, e« Intersection: (%)

» Edges represent flow of types
» graph may be cyclic

11

Local Value Graph Example

T, M);
S1: kEA.a;
s2: k=M);
s3: A a[0]

Bl1.1: getstatic A a
B1.2: astore Kk
B2.1: 1 nvokestatic
M

B2.2: astore Kk
B3.1: getstatic A a
B3.2: iconst O

- aload k

: aastore

(A.9)

12

Computing Local and Global Value
Graphs

» Local Value Graph

» Abstract interpretation of bytecodes
« propagates types symbolically through stack
Represents type flow in method

» Global Value Graph

« Local Value Graph is compressed after method
IS analyzed
« Local variable nodes can be bypassed and removed

» Local Value Graph is spliced into Global Value
Graph

13

Global Value Graph

Global Type Method Global

Constants Metho ;Mmmarles Locations
‘ (A.3)

14

Computing Type Information

» For use In optimization

» Determine the type of a given location

« on-demand traversal of the Value Graph

 reverse-DFS starting at location
 types are propagated along the edges

| Tl

T T* T*
T, |[Aa D)0 (Al

%Tl %Tl“ (0.7
T\ LK

15

Experimental Setup

» Prototyped using sikes RVM
 type-based optimizations of calls
« recompile after first run at highest opt level

« Benchmarks:
« SPECjvm98, Hyper/J, Xerces (DOMCount)

« Measurements
« Dynamic counts of virtual and interface calls
« Execution times
» Value Graph sizes and traversal statistics
» Value Graph construction times

16

% of all interface invocations

100% -

80% -

60% -

40% -

20%

0% -

+ 0 . r r 1 [[[[[]

Y . r 1 [[[[[]
e O O N O O
Y (r r 1 [[[[[]

Experimental Results

Impact of DOIT Analysis on Interface Calls

48e2 2.8e6 6.0e7 1l.4e7 7.9e5 2.4e2 19e7 4.7e7 7.2e6 1l.7e7

@ Virtualized and unguarded
[Virtualized and guarded

B Static guarded inline

M Virtualized

M Interface dispatch

P Pessimistic (CHA)
O Optimistic (DOIT)

S [O A
L e e e e) S ——
[O A

P

O PO PO PO PO PO
2 o, 2. %
Q e £ QO Q.
% % %
%,. %, °°
0 d

17

Experimental Results

Speedup from using interprocedural type info

B Speedup
21.0s 82s 213s 122s 210s 48 158 31s 24s 122s
8% - 7.5%
7% -
o 6%
% 5%
ol 4% 3.6% 34%
L 3% 2.4%
2% - 1.6%
1% - oy O. 5(VO—O8%
] 0.3%
0% - .
.
\) % “»

18

Experimental Results

Value Graph Traversal Statistics

M Nodes
M Edges

Average nodes/edges visited

Analysis rate (bcb/ms)

Experimental Results
Analysis Rates (bytecode bytes/ms)

2.53x 4.49x 2.81x 487x 2.80x 5.40x 420x 3.53x%

1000 |
900 u
800 .
700
600 — | | Baseline Compiler

500 - — @ DOIT Analysis

400 —

300 - a

200 B
100]]] -
O il

20

Outline

1. Motivation

2. Dynamic Optimistic Interprocedural Type
Analysis (DOIT)

3. Immutability Analysis Opportunities for
Dynamic IPA

4. Future Challenges

21

Immutabllity Analysis:
Motivation

o Immutability information can be used interprocedurally to
enhance:

» Load elimination and register allocation
» Load of immutable value cannot be changed across a procedure call
 Array dependence analysis, pointer alias analysis

» Target of a store instruction cannot be aliased with target of a load
instruction

» Value Numbering / CSE / PRE

» Load of an immutable value can be treated similarly to read of an
unmodified local variable to enable optimization of derived
expressions (including null pointer, type checks, array bounds checks)

 Data transformations
« Object inlining, splitting, replication, caching
« Parallelization
« Immutable locations cannot interfere with parallelization

22

1.
2.

Immutabllity Properties

Dimensions of Immutability:

Lifetime

« e.g., whole program, after a certain point, in method call
Reachability

« e.g., reference, object, full reachability, arbitrary shape
Context

« e.g., all instances, instances within a method, etc.

Existing language mechanisms provide limited support for these
dimensions
e.g., Javafi nal , C++ const

How can immutability properties be obtained?
Specified by user
Inferred (optimistically) by dynamic optimization system
Opportunity for Dynamic IPA

23

Dimensions: Lifetime

& whole program

B after a certain program point
 €.g., after an object has been initialized

In a method call
etc.

foo) bar() bar()

24

Dimensions: Reachability

B reference (=f I nal)

object

I full reachability

M arbitrary shape

F—>»

==
pempiy =S

-

25

Simple Example

class MyString {

[* assunme deep immutability for S*/
final char[] S;
final 1 nt count;

|nt foo() {

I nt cl
bar () ;
| Nt c2
return

}
}

S[0] ;

= 5[0] ;

cl + c2;

[/ c2 must be sane as cl

26

Limit Study: Immutability Ratio

» Define Immutabillity Ratio as
of read operations after last write

total # of read operations

IR =

» IR actual
» Obtained by counting last write separately for
each dynamic object instance
o IR uniform

« Obtained by assuming that writes are uniformly
distributed among reads

« Hypothetical “ expected” value of IR
27

Limit Study: Experimental Setup

Instrument Jikes RVM to generate traces
» all read and write accesses

Benchmarks

® Jikes RVM regression tests
» bytecodeTests, reflect, threads, utf8, opttests

« CaffeineMark
« SPECjvm98 (input size = 10%)

o« 200 check, 202 jess, 209 db, 213 javac
» Xerces (DomCount)
Goal: measure Immutability Ratio for
benchmarks

28

Immutability Ratios

== |[R uniform

| == IR actual

Fraction of all reads

3 3 3 0§ 8 883883

202 1000

_209_db -
_213_Javac —

poscourt M
Welghted —

o

CaffelneMark .

Benchmark 29

Limit Study: Abstract Locations

» Abstract location = static representative for set of
dynamic locations
» Each declared field is a distinct abstract location
« Each declared array type is a distinct abstract location

» Coarse-grained immutability: measured by
merging all dynamic instances of the same
abstract location

o Goals:

« Measure gap between fine-grained and coarse-grained
Immutability

« Determine how immutable reads are distributed across
abstract locations

30

Distribution of immutable reads across
abstract locations: 202 jess

16408 . _202_jess
1e+08 -
-g 1e+07 -
o 1e+06 - P
n ooooooooooo / ’
£ jor05 |
£ /
Eijeos . 7
3 B
_§ 1e+03 -
E
= 1e+02 - ~+ Fine-grained Immutabllity
: ——— Coarse-gralned Immutabillity
1e+01 -
1e+00 | ‘ ‘ \ ‘ ‘ \ ‘ ‘ \ ‘ ‘ \
0.00 0.05 0.10 0.15 0.20
Fraction of abstract locations

31

Number of immuta

Distribution of immutable reads across
abstract locations: 209 db

209 _db

| Q/O*O’O—O*O’O*O~O*O*O*O*O’O*O'O*O*O*O*O*O—O
1e+06 - NN

/

o—0——=0

:

:

S

—=<— Fine-grained immutability
—o— GCoarse-gralned Immutabllity

1 o0007°

:

:

005 010 015 020
Fraction of abstract locations 32

£
£

Number of immutable

Distribution of immutable reads across

abstract locations: 213 javac
_213_javac

1e+08 -

1406

ooooo
s
OOOOOO
o0
OOOOOO
o

> @ o o
REE

—+— Fine-gralned Immutabllity
] —— Coarse-gralned Inmutabllity
1e+01 -

fe00
0.00 0.05 0.10 0.15 0.20

Fraction of abstract locations

33

Distribution of immutable reads across
abstract locations: DOMcount

DOMcount

Number of immutable reads

—— Fine-gralned Inmutabliity
—— Coarse-gralned Inmutabllity

T T —
0.00 0.05 0.10 0.15 0.20

Fraction of abstract locations

34

Invalidation Issues in Dynamic IPA

» Correctness: must always be possible to
undo the optimization
» need recovery procedure; may limit scope of
optimization
» Efficiency: cost; depends on

» What optimization is performed, e.g.,
» preexistence based inlining only needs recompilation
« dead store elimination needs on-stack replacement
« Object inlining needs data structure rewriting

« When optimization is performed

» delaying optimization may avoid need for invalidation
35

Integrating Dynamic IPA into
Adaptive Optimization Framework

« Invalidation cost supplied to adaptive
system
« Which uses cost-benefit model

» Optimization considered worthwhile If cost
of invalidation less than potential benefit
« Invalidation cost may vary dynamically

» Optimizations may be more profitable for
long-running programs

36

Adaptive Optimization System w/
Adaptive Inlining

37

1.

Outline

Motivation

2. Dynamic Optimistic Interprocedural Type

3.

4.

Analysis (DOIT)
mmutability Analysis Opportunities for
Dynamic IPA

~uture Challenges

38

Future Challenges

« Integrating Dynamic IPA into Adaptive
Optimization and Invalidation

» Automatic inference of Dynamic IPA
properties of interest

» Application of Dynamic IPA to verification

» Refining granularity of Dynamic IPA from
methods to basic blocks

39

