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Motivation

« Interprocedural analysis (IPA) is essential for compiler-
driven performance
« especially when optimizing object-oriented languages
« Static IPA optimizations:
» limited precision due to impact of methods that may not be executed
» scalability limitations in analyzing static “ whole program”
« Dynamic intra-procedural optimizations:

» Significant advances, with inlining, to address interprocedural
optimization opportunities

» reaching point of diminishing returns
o Dynamic IPA:
» Opportunity to get best of both worlds



Dynamic Interprocedural Analysis Scenario

» Ssupports dynamic class loading, adaptive
optimization, optimistic assumptions about
unanalyzed code
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Invalidation Scenario

» Support for invalidation is necessary, to handle
case when optimistic assumption proves to be
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Use IPA information,
making optimistic
assumptions
1

Analyze M,; M, Invalidate
violates optimized
assumptions for compilation of

Ivlk Ivlk

Method M, (re)
compiled
with optimization

New
classes
get loaded

First execution
of new method
M

X

(unoptimized)

Y



Number of methods

Static vs. Dynamic Application Characteristics:
(Number of Methods)

7000 6548
6000

5000
4000
3000
2000

1000
0

B Semi-static (all methods in dynamically loaded classes) m Dynamic

Ratio of Dynamic methods to Semi-static methods ~ 12% - 50%

2



Static vs. Dynamic Application Characteristics:

(Number of Fields containing object references)
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DOIT Phases

« Initialization
» Analysis
» analyzes each method on first invocation
 Incorporates method summary into Value Graph
» Optimization
o traverses Value Graph to identify types
 Uses type information in optimization
« registers verification actions for type info used
» registers invalidations for optimized method
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Value Graph

» Node n denotes a set of types, (n)

» Location nodes « Operator nodes
« Local variable » Closure: (*)
« Field « Subscript: ([])
« Array element » Union: (&)

- Constant type e.g., T, e« Intersection: (%)

» Edges represent flow of types
» graph may be cyclic
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Local Value Graph Example

T, M);
S1: kEA.a;
s2: k=M);
s3: A a[ 0]

Bl1.1: getstatic A a
B1.2: astore Kk
B2.1: 1 nvokestatic
M

B2.2: astore Kk
B3.1: getstatic A a
B3.2: iconst O

- aload k

: aastore

(A.9)

12



Computing Local and Global Value
Graphs

» Local Value Graph

» Abstract interpretation of bytecodes
« propagates types symbolically through stack
Represents type flow in method

» Global Value Graph

« Local Value Graph is compressed after method
IS analyzed
« Local variable nodes can be bypassed and removed

» Local Value Graph is spliced into Global Value
Graph
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Global Value Graph

Global Type Method Global

Constants Metho ;Mmmarles Locations
‘ (A.3)
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Computing Type Information

» For use In optimization

» Determine the type of a given location

« on-demand traversal of the Value Graph

 reverse-DFS starting at location
 types are propagated along the edges
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Experimental Setup

» Prototyped using sikes RVM
 type-based optimizations of calls
« recompile after first run at highest opt level

« Benchmarks:
« SPECjvm98, Hyper/J, Xerces (DOMCount)

« Measurements
« Dynamic counts of virtual and interface calls
« Execution times
» Value Graph sizes and traversal statistics
» Value Graph construction times
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% of all interface invocations
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Experimental Results

Impact of DOIT Analysis on Interface Calls
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Experimental Results

Speedup from using interprocedural type info
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Experimental Results

Value Graph Traversal Statistics
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Analysis rate (bcb/ms)

Experimental Results
Analysis Rates (bytecode bytes/ms)
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Immutabllity Analysis:
Motivation

o Immutability information can be used interprocedurally to
enhance:

» Load elimination and register allocation
» Load of immutable value cannot be changed across a procedure call
 Array dependence analysis, pointer alias analysis

» Target of a store instruction cannot be aliased with target of a load
instruction

» Value Numbering / CSE / PRE

» Load of an immutable value can be treated similarly to read of an
unmodified local variable to enable optimization of derived
expressions (including null pointer, type checks, array bounds checks)

 Data transformations
« Object inlining, splitting, replication, caching
« Parallelization
« Immutable locations cannot interfere with parallelization
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1.
2.

Immutabllity Properties

Dimensions of Immutability:

Lifetime

« e.g., whole program, after a certain point, in method call
Reachability

« e.g., reference, object, full reachability, arbitrary shape
Context

« e.g., all instances, instances within a method, etc.

Existing language mechanisms provide limited support for these
dimensions
e.g., Javafi nal , C++ const

How can immutability properties be obtained?
Specified by user
Inferred (optimistically) by dynamic optimization system
Opportunity for Dynamic IPA
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Dimensions: Lifetime

& whole program

B after a certain program point
 €.g., after an object has been initialized

In a method call
etc.

foo)  bar() bar()
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Dimensions: Reachability

B reference (=f I nal )

object
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Simple Example

class MyString {

[* assunme deep immutability for S*/
final char[] S;
final 1 nt count;

|nt foo( ) {

I nt cl
bar () ;
| Nt c2
return

}
}

S[ 0] ;

= 5[ 0] ;

cl + c2;

[/ c2 must be sane as cl
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Limit Study: Immutability Ratio

» Define Immutabillity Ratio as
# of read operations after last write

total # of read operations

IR =

» IR actual
» Obtained by counting last write separately for
each dynamic object instance
o IR uniform

« Obtained by assuming that writes are uniformly
distributed among reads

« Hypothetical “ expected” value of IR
27



Limit Study: Experimental Setup

Instrument Jikes RVM to generate traces
» all read and write accesses

Benchmarks

® Jikes RVM regression tests
» bytecodeTests, reflect, threads, utf8, opttests

« CaffeineMark
« SPECjvm98 (input size = 10%)

o« 200 check, 202 jess, 209 db, 213 javac
» Xerces (DomCount)
Goal: measure Immutability Ratio for
benchmarks
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Immutability Ratios

== |[R uniform

| == IR actual

Fraction of all reads

3 3 3 0§ 8 883883

202 1000

_209_db -
_213_Javac —

poscourt M
Welghted —

o

CaffelneMark .

Benchmark 29



Limit Study: Abstract Locations

» Abstract location = static representative for set of
dynamic locations
» Each declared field is a distinct abstract location
« Each declared array type is a distinct abstract location

» Coarse-grained immutability: measured by
merging all dynamic instances of the same
abstract location

o Goals:

« Measure gap between fine-grained and coarse-grained
Immutability

« Determine how immutable reads are distributed across
abstract locations
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Distribution of immutable reads across
abstract locations: 202 jess
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Number of immuta

Distribution of immutable reads across
abstract locations: 209 db
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Distribution of immutable reads across
abstract locations: DOMcount
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Invalidation Issues in Dynamic IPA

» Correctness: must always be possible to
undo the optimization
» need recovery procedure; may limit scope of
optimization
» Efficiency: cost; depends on

» What optimization is performed, e.g.,
» preexistence based inlining only needs recompilation
« dead store elimination needs on-stack replacement
« Object inlining needs data structure rewriting

« When optimization is performed

» delaying optimization may avoid need for invalidation
35



Integrating Dynamic IPA into
Adaptive Optimization Framework

« Invalidation cost supplied to adaptive
system
« Which uses cost-benefit model

» Optimization considered worthwhile If cost
of invalidation less than potential benefit
« Invalidation cost may vary dynamically

» Optimizations may be more profitable for
long-running programs
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Adaptive Optimization System w/
Adaptive Inlining
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Future Challenges

« Integrating Dynamic IPA into Adaptive
Optimization and Invalidation

» Automatic inference of Dynamic IPA
properties of interest

» Application of Dynamic IPA to verification

» Refining granularity of Dynamic IPA from
methods to basic blocks
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