An Analysis Of Bytecodes
Produced By XSLTC

Allan Kielstra,
Henry Zongaro

Overview
Overview of XSLT
Overview of the compiler

Characteristics of machine generated
bytecodes

XSLTC Processing

XSLT: In brief

Processor transforms XML to XML or
HTML

Models input document as tree of nodes

XSLT stylesheet consists of templates

— specify patterns against which processor
attempts to match nodes in input

— If node matches a template’ s pattern, template
IS executed for that node

— usually will create part of new XML output

Example XSLT:

http://www.w3schools.com/xsl/xsl|_transformation.asp

<?xml version="1.0" encoding="1S0O-8859-1"?>
<xsl:stylesheet version="1.0"
xmlns:xsl=http://www.w3.0rg/1999/XSL/Transform” >
<xsl:template match="/">
<html>
<!l — Deleted from example HTML>
<xsl:for-each select="catalog/cd">
<tr>
<td><xsl:value-of select="title"/></td>
<td><xsl:value-of select="artist"/></td>
</tr>
</xsl:for-each>
<!l — Deleted from example: HTML >
</html>
</xsl:template>
</xsl.stylesheet>

XSLT: In brief

1. Processing begins with root of input tree as
context node

2. Attempt to match context node against templates

3. If no match, make each child of node the context
node In turn, and recursively apply step 2

4. Otherwise, matched template executes for context
— may create part of result

— may request recursive jump to step 2 for any set of nodes
In Input (or even in any other document); most often, just
children or nothing

XSLT: In brief

Nodes are selected and matched
using XPath expressions

XPath Is hierarchical navigation
system for XML, similar to file

paths/URIs

— a/b/c selects “ ¢” element children of “ b”
element children of “ a” elements that
are children of the context node

Example XPath

<chode>
<a>
<p>
<c> element </c>
<c> element </c>

<c> element </c>

</chode>

XSLTC Detalls

Several XSLT processors, including
Apache XSLTC (XSLT Compiler)

— compliles stylesheet to Java class(es)
— compliles templates to methods

— methods implement mutually recursive
processing described

— relies very much upon run-time support
classes

XSLTC Detalls

Run-time support includes evaluation
of each step in XPath expressions

— In expression like a/b/c, iterator Is
responsible for evaluation of each step

— generated code asks run-time to create
iterator to evaluate that step, relative to
context node

— Iterators are composed to evaluate
complete path expression

Some Other Bytecode
Generators

ISP Compiler

— Sovereign optimizer runs in time O
(2 _ 3bytecodes * number trys)

Bytecode obfuscators
— JITs work best with reducible CFGs

Elements Of Interest

Application Server/Application

XML Parser

XSLTC

Generated Code

JVM (Including JIT)

XSLTC Runtime

Tracking Names

Many operations on data type X have
a predilection for using the name “ x”

Save current “ x” on object of type “ X”
Initialize “ x” for new use

Use “ x” for some purpose
Copy saved value back to

Result of compiler * pushlng current
state

Parameter passing

If It requests recursive processing of
nodes, template can pass parameters

— but pattern matching involved

— which parameters are passed and which
expected by matching templates not
known statically

— a stack class iIs used to push parameters
at call site, then template that matches
checks stack for parameters it needs

Parameter passing

For convenience, same mechanism
was used for explicit procedural calls

— should really use parameters on Java
method

— nho confusion about which method Is
Invoked

Parameter passing

pushPar anfrane() ; Cbj ect I nteger = .
| nt eger = . proc(i nteger);
addPar anmet er (i nt eger) ;
proc(); proc(Qbj ect arg) {
popPar anfr ame() ; }
proc() {

| nt eger = .

bj ect obj ect =
addPar anet er
(1 nteger);

}

Large, General Purpose
Methods

It" s easler for the compiler to
generate a single method for a single
template.

Template parameters are not
guaranteed to have known types.

This leads to a lot of downcasts
followed by Iinstanceof predicates

Example (concrete 1)

N_Em
voi d
{ ue void rt_net hd(Obj ect o)
Concrete cl,; { :
_ If (o Instanceof
tenmpl _1(cl); Concr et e)
} {

| | [/ do sonet hi ng
voi d tenpl 1(Cbject o) 1

{
rt_met hhd(o); }

}

Example (concrete 2)

void m)
{
Concrete cl; void rt_concrete(
tenmpl _c(cl); Concerete c)
} {

/] do sonet hi ng
void tenpl c(Concrete c) }

{

rt_concrete(c);

}

Use of Larger Data Types

Virtually all (user) numeric scalars are
of type double.

Chars are frequently treated as single
character strings.

— Leads to uses of string.equals(“ a”)

Caching Of Ilterators

Some complex transformations
require iterating over the same
document elements multiple times

It’ s easler for XSLTC to use fresh
iterators every time

Can lead to excessive GC

Example (lterators 1)

void m() void draw iten()
{ {
for (; ;) 11l = new Iterator();
{ 12 = new lterator();
draw i ten() [/
} for (; 11 ;) [/
} for (; 12 ;) I/

}

Example (lterators 2)

void m) voi d draw i tem(Cache c)

{ {

c = new Cache(); renew c. i 1,

c.il =newltr(); renew c.i 2;

cC.i2 = new ltr(); [/

for (; ;) for (; c.11;) [/
{ for (; c.12;) Il
draw i tenic) }

}

Recursive Application Of
Templates

Document elements are often
described recursively

Required transformations can,
therefore, be applied recursively

Document/Iterators are always in the
form of a tree

Each document is only visible to a
single thread

Example (Recursion 1)

' void apply_tenplate(DOM d, Iterator itr) {

{
while ((i =itr.next()) > 0)
{
switch (d.gettype(i))
{
case a: [/
case b: //
case X:
appl y_tenpl ate(d, d.child(i));
br eak;
}
}

Example (Recursion 2)

void apply_tenplate(DOM d, Iterator itr) {

{
Itr.parent = null;
for (sitr =itr; itr; sitr = sitr.parent)
{
while (sitr.next() > 0)
{
Sw tch
{
case a: //
case X:
d.child(sitr.getPosition()).parent =
sitr;
sitr = d.child(sitr.getPosition());
}
}

Results (Including B2B)

XSLTC 2.5.1 |Latest
dbonerow 424.38 319.08
gueens 16.58 8.5/
identity 62.96 418.62

Results (Xerces Parser)

Old New
gueens 16.58 10.11
identity 62.96 58.90
SalesSearch [317.02 121.51
Viewltem 3.48 2.93

Tricks That XSLTC Could
Play

Caching and re-use of objects
Specialization of templates

Cheats: Communications
between XSLTC and JITC

Elimination of checks such as array
bounds checks

Specification that specific allocations
are thread local

Set compilation threshold/hotness.

