Compiler Management of

Global and Dynamic Data Reuse

Chen Ding

Computer Science Department
University of Rochester

Rochester, New York

Computer Science @ Rochester

® Established in 1974
— traditionally focused in AI, vision, natural l[anguages, computer systems
— Xerox workstations in late 70s
— largest shared-memory parallel machine in [ate 80s
— small department (14 faculty members)
® System group in 2003
computer science: Chen Ding, Sandhya Dwarkadas, Amy Murphy, Michael Scott, and Kai Shen

computer engineering: David Albonesi, Michael Huang, Wendi Heinzelman
— 7 papers in FCRC 2003 (4 1SCA, 2 PPoPP, 1 PLDI)

® Students involved in the compiler work.
— Yutao Zhong, Yongkang Zhu, Xipeng Shen, Maks Orlovich, and Ahren Studer

Background

Computer speed improvement

— Moore’ s law

— supercomputers [Allencr Kennedy, Optimizing Compilers, p.2]
Memory gap (wall, cliff, ..)
Insufficient memory bandwidth

— CPU speed improves 60% a year on average

— memory bandwidth ~28% a year [Burger+ 1SCA’ 96]
Our research

— understanding large-scale data behavior

Machine and Program Balance

by Callahan, Cocke, and Kennedy
in JPDC’ 88
extended by Ding and Kennedy
in IPDPS’ 00

Performance Model

Machine balance

— max load/store bandwidth divided by max flop rate

Program balance

— total loads/stores divided by total floating-point ops

Consequences
— B ctine = B S CPU and bandwidth utilization
- @macﬁine < gpragmm C?(Z’l u[[e

Extensions [Dinger Kennedy, IPDPS’ 00] to appear in JPDC
— multi-level memory hierarchy

— ratio of demand over supply

Memory-Bandwidth Bottleneck

Ratios of demand to supply

App lications Ratio : dema nd/ suppl y
Reg BW Cac he BW |Mem BW

_\
IR SR A

_

Maximal CPU utilization: 10% to 33%
The imbalance is getting worse

Need to minimize total memory transfer

Software Solutions

® Reorder the computation
— fusing the computation on the same data
® Reorganize the data

— grouping data used by the same computation

AXYY.nnnnn axey...... /\A aaxxyyy...e...

axyy...... xaey...... "~ A agbcc...baec...

® Scale matters
— long temporal distance

— large data volumes

Outline

® Memory optimization in scientific programs
— reuse-based loop fusion
— affinity-based data regrouping
— dynamic data pacKing
® Reuse pattern in complex programs
— miss rate prediction

® Current work

Computation Fusion
and
Data Regrouping

[IDing&Kennedy IPDPS’ 01 Best Paper,
_CPC’ 99]
to appear in JPDC

Example Fusion

for 1=2, N

a[i] = f(a[i-1])
end for
al1] = a[N|
a[2] = 0.0
for 1=3, N

b[1] = g(a[l-2])
end for

y

for 1=2, N
ali]=f(a[i-1])
1 f (1 ==3)
a[2]=0.0
else if (i==N)
a[1] = a[N]

end I f

if (i>2 && i<N)
b[1+1] = g(a[i-1])

end i f

end for

= g(a[1])

b[3]

® [oop embedding, loop splitting, interleaving+alignment

10

Reuse-Based Fusion

Previous work.

— fusing loops of the same shape

® ¢.4. same iteration counts, same number of levels, and perfectly nested

Reuse-based fusion

— reuse based

— shape independent
Multi-level fusion

— minimize the number of outer loops
Optimal fusion for bandwidth

— hyper-graph formulation of data sharing

— an NP-hard problem

11

Data Regrouping

Cache-block utilization

— high-end machines use large cache blocKs

— use one integer in a 64-byte cache block

® 6% bandwidth and cache utilization

Data regrouping

— group “useful” data into the same cache block
Questions

— what does “ useful” mean?

— can we regroup data across array and object boundary?

— can we regroup data during execution?

12

Reference Affinity

Definition
® data that are always used together belong to the same affinity group
® reflective, symmetric, transitive
An example
® ayyx...... Xayexx...... eeye
® affinity groups: {a,x}, {y}, and {e}
Comparison with frequency models
® access frequency: [xy.e} and {af
® ypairwise frequency/affinity: {a, y, ¢}, {x/
* frequently used % frequently used together

13

More on Data Regrouping

Multi-dimension data regrouping
— exploits reference affinity at all levels
— guarantees a consistent solution
Partial and dynamic reference affinity
— data are accessed together at different times
— NT—ﬁarc{ proﬁ[ems [Thabit, Rice’ 81, Kennedyer Kremer, TOPLAS’ 98]
— optimal solution is machine-dependent
Dynamic data pacKing [Dinger Kennedy, PLDI" 99]
— adaptive changing data layout during execution

— found to be cost effective [Mellor-Crummey+ ICS’ 99, Strout+ PLDI’ 03]

14

Example packing

original
array al 1] a[2] a[3]

—

data

Ha[S], a[800], a[8], a[?2],

access

g transformed
ymy a[8] a[800] a[?2]

4 N

Software remapping:
afi/] afremapli]]
albfi]] afremap[bfi]]]

15

Dynamic Optimizations

Locality grouping ¢ Dynamic pacKing
— run-time versions of computation fusion ¢ data grouping
— linear time and space cost
Compiler support
— analyze data indirections
— find all optimization candidates
— use run-time maps to guarantee correctness
— Temove unnecessary remappings
® map reuse
® reference update

The first set of compiler-generated run-time transformations

16

NAS/SP

BenchmarKk application from NASA

computational fluid dynamics (CFD)

class B input, 102x102x102

218 loops in 67 loop nests, distributed into 482 loops
15 global arrays, split into 42 arrays

® ¢yg. a(3n)->alln) a2(n) ad(n)

Optimizations

— fused into a dozen loop nests

— grouped into 17 new arrays, e.g.

® fainv[nnmn/, us/nnnj, gsfnnnf, ulnnmn1-5J}

¢ /[ﬁS[Tl,Tl,Tl;é"gj, [ﬁﬁ[ﬂ;ﬂ;ﬂ;ll'13]}

17

Z

0

2JUBWIo J12d pazi|ewiopN

NAS/SP

O no optimization

M fusion+grouping

rmapize

© O
o ©

O O
o N &

] performance

exe. L1
time misses

L2 TLB
misses misses

18

Comparison with SGI Compiler

pro grams ‘ L2 miss es TLB mis ses

--_---_
P 4 ENTETETE
as/es (o Poss | s | i Josr Joos |

Av era ge -----

19

Other Fusion Studies

* Early fusion studies

first uses [Wolfe UTUC’ 82, Allen & Kennedy IEEE IC’ 86]

complexity [KennedyerMcKinley Rice’ 93, Darte PACT’ 99]

heuristics [Gao+ LCPC’ 92, Kennedy ICS’ 01]

implementation [McKinley+ TOPLAS’ 96, ManjiKianer Abdelrahiman 97, Lim+ PPoPP’ 01]

array contraction [Gao+ LCPC’ 92, Lim+ PPoPP’ 01, Song+ ICS’ 01]

® Aggressive loop blocKing/tiling

shacKling and slicing [Kodukula+ PLDI’ 97, PugherRosser LCPC' 99, Vi+ PLDI’ 00]
time sKewing [Song PLDI’ 99, Wonnacott IPDPS’ 00, Jin+ SC’ 02]

® Recent work

manual fusion in C programs [Pingali+ I1CS’ 02]

compiler fusion of loops containing array indirection [Strout+ PLDI’ 03]

20

Data Locality Models

Frequency
- frequency [Knuth 71, CocKe-Kennedy IBM74, Sarkar PLDI’ 86, Seidl-Zorn ASPLOS’ 98]
— pair-wise affinity [Thabit 81, Calder+ ASPLOS’ 98], hot data streams [Chilimbi+ PLDI" 01]
— NP-hardness [Thabit 81]
— the harsh limit of heuristics [Petrank-Rawitz POPL’ 02]
® observation: frequently used w2 frequently used together
Affinity groups
— compile-time optimal [Dinger Kennedy IPDPS’ 01]

— hierarchical and consistent [Zhong+ LCPC’ 03]

21

Miss Rate Prediction
Across All Program Inputs

[Zhong, Dropsho, & Ding, PACT 2003]

Based on Reuse Signature Pattern
[Ding&Zhong PLDI 2003]

22

A Web-based Interactive Tool

£ Reuse Wiss Rate Applet

- SRtk = S
G L e L B

JureEnl 3a0thoeak.
e

acha TR OREE;

http://www.cs.rochester.edu/research/locality

25

Summary

Long distance reuses
— reflects affinity relation of data
— determines cache utilization and bandwidth demand
Improvement
— applying computation fusion and data regrouping across whole programs and at run time
Analysis and prediction
— correlation and prediction of reuse signatures
On-going research
— [limit of program locality
— program phase analysis

— fine-grained and dynamic data management

26

The End

Thank you

27

