
Tuning Numerics for the
Memory Hierarchy:

High-Performance Linear
Algebra Routines for

BlueGene/L

Siddhartha Chatterjee

IBM T. J. Watson Research Center
Yorktown Heights, NY

CASCON'03 workshop 2

C h i p
(2 p r o c e s s o r s)

C o m p u t e C a r d
(2 c h i p s , 2 x 1 x 1)

N o d e B o a r d
(3 2 c h i p s , 4 x 4 x 2)

1 6 C o m p u t e C a r d s

S y s t e m
(6 4 c a b i n e t s , 6 4 x 3 2 x 3 2)

C a b i n e t
(3 2 N o d e b o a r d s , 8 x 8 x 1 6)

2 . 8 / 5 . 6 G F / s
4 M B

5 . 6 / 1 1 . 2 G F / s
0 . 5 G B D D R

9 0 / 1 8 0 G F / s
8 G B D D R

2 . 9 / 5 . 7 T F / s
2 5 6 G B D D R

1 8 0 / 3 6 0 T F / s
1 6 T B D D R

BlueGene/L

CASCON'03 workshop 3

Compute Node Structure of BlueGene/L

Dual core

Dual FPU

Three-level cache memory
hierarchy

Non-coherent L1 cache

L2 and L3 caches coherent

CASCON'03 workshop 4

Dual FPU Architecture

Dual floating-point unit

SIMD instructions over
both register files

FMA available

Quadword loads/stores

CASCON'03 workshop 5

Motivation

Issues in designing high performance and robust math
library routines that are memory-bound

Where does data come from (L1 vs L3)?

Is the data aligned?

Robustness

Would like the performance to approach the machine limits and
not vary significantly based on level of cache residency or data
alignment

Would prefer to avoid writing assembly code

We are writing libraries, not complete applications

Separate compilation

No global knowledge

CASCON'03 workshop 6

Data Source Issue

CPU 1CPU 0

DDR

L3$ + wc

L2$ L2$

L1$ + wc L1$ + wc

RF RF

16 B/pclk
8 B/pclk

16/3 B/pclk
write-combinewc

Prefetching
L3-to-L2 and DDR-to-L3
“ push” -based
prefetching work well to
mask latency for stream
accesses
L2-to-L1 prefetching is
“ pull” -based

Typical bottlenecks are
The DDR-to-L3 path
The L2-to-L1 path
The number of outstanding
misses that L1 can support

Bottleneck analysis useful
to predict code
performance

CASCON'03 workshop 7

Data Alignment Issues

0x04 0x080x00 0x0c 0x10 0x180x14 0x1c
ok

ok
ok

ok
ok

ok

ok

0x04 0x080x00 0x0c 0x10 0x180x14 0x1c
ok

Possible accesses to memory data:

(doublewords) (quadwords)

Relative alignment between data structures:

x

y y

x

CASCON'03 workshop 8

DAXPY

Vector scaling in the form:

y = a*x + y
BLAS Level 1 operation

Memory bounded kernel: three accesses to
memory for every computation:

Load of x[i] into p

Load of y[i] into q

Computation of r = a*p + q

Store of r into y[i]

There is no reuse of the elements loaded

CASCON'03 workshop 9

DAXPY Bandwidth Utilization
Memory Bandwidth Utilization vs Vector Size for Different Implementations

of DAXPY

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Vector Size (bytes)

M
em

. B
an

dw
id

th
 (b

yt
es

/c
yc

le
)

Intrinsics
Assembly
Vanilla

5.3 bytes/cycle
(L3 – bandwidth)

16 bytes/cycle
(L1 – bandwidth)

CASCON'03 workshop 10

DAXPY: Effect of Data Alignment
(Intrinsics and Assembly Versions)

DAXPY Bandwidth: Effect of Misalignment

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0 500 1000 1500 2000 2500 3000 3500

N (elements)

M
em

. B
an

dw
id

th
 (b

yt
es

/c
yc

le
)

Both vectors aligned

relative misaligment
(intrinsics)

relative misalignment
(assembly)

5.3 bytes/cycle
(L3 – bandwidth)

16 bytes/cycle
(L1 – bandwidth)

CASCON'03 workshop 11

DGEMV

Two basic operations:
 y+=Ax

 y+=ATx

Different optimizations for the situations:
Data resides in L3 cache

Data resides in L1 cache

There is some reuse of vector elements loaded

CASCON'03 workshop 12

Memory Bandwidth Utilization for L3-optimal DGEMV kernel

0

1

2

3

4

5

6

7

8

9

10

0 50000 100000 150000 200000 250000 300000 350000 400000

Size (bytes)

m
em

. b
an

dw
id

th
 (b

yt
es

/c
yc

le
)

L3-optimal kernel
(1st running)

L1-optimal kernel
with intrinsics(1st
running)

L1 and L3-optimal DGEMV Bandwidth
Utilization

5.3 bytes/cycle
(L3 – bandwidth)

Two different kernels are
needed to deal with data
when:

-Data come out of L1

-Data come out of L3

CASCON'03 workshop 13

What More Could We Want?

Open up the cache architecture more
It would be good if the library writer could specify that a
particular access would be a miss in L1, or a hit in L3, or
whatever

Expose more microarchitectural constraints to the
compiler

Example: maximum number of L1 cache misses before
stall

Better register scheduling algorithms
Currently, we have observed excessive spills when using
close to all 32 registers

