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Compute Node Structure of BlueGene/L

Dual core

Dual FPU

Three-level cache memory 
hierarchy

Non-coherent L1 cache

L2 and L3 caches coherent
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Dual FPU Architecture

Dual floating-point unit

SIMD instructions over 
both register files

FMA available

Quadword loads/stores
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Motivation

Issues in designing high performance and robust math 
library routines that are memory-bound

Where does data come from (L1 vs L3)?

Is the data aligned?

Robustness

Would like the performance to approach the machine limits and 
not vary significantly based on level of cache residency or data 
alignment

Would prefer to avoid writing assembly code

We are writing libraries, not complete applications

Separate compilation

No global knowledge
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Data Source Issue

CPU  1CPU  0
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Prefetching
L3-to-L2 and DDR-to-L3 
“ push” -based 
prefetching work well to 
mask latency for stream 
accesses
L2-to-L1 prefetching is 
“ pull” -based

Typical bottlenecks are 
The DDR-to-L3 path
The L2-to-L1 path
The number of outstanding 
misses that L1 can support

Bottleneck analysis useful 
to predict code 
performance
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Data Alignment Issues
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DAXPY

Vector scaling in the form:

y = a*x + y
BLAS Level 1 operation

Memory bounded kernel: three accesses to 
memory for every computation:

Load of x[i] into p

Load of y[i] into q

Computation of r = a*p + q

Store of r into y[i]

There is no reuse of the elements loaded
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DAXPY Bandwidth Utilization
Memory Bandwidth Utilization vs Vector Size for Different Implementations 

of DAXPY
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DAXPY: Effect of Data Alignment 
(Intrinsics and Assembly Versions)

DAXPY Bandwidth: Effect of Misalignment
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DGEMV

Two basic operations:
 y+=Ax

 y+=ATx

Different optimizations for the situations:
Data resides in L3 cache 

Data resides in L1 cache

There is some reuse of vector elements loaded
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Memory Bandwidth Utilization for L3-optimal DGEMV kernel
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What More Could We Want?

Open up the cache architecture more
It would be good if the library writer could specify that a 
particular access would be a miss in L1, or a hit in L3, or 
whatever

Expose more microarchitectural constraints to the 
compiler

Example: maximum number of L1 cache misses before 
stall

Better register scheduling algorithms
Currently, we have observed excessive spills when using 
close to all 32 registers


