
Generic IDL: Generic IDL:
Parametric Polymorphism for Parametric Polymorphism for

Software Component Software Component
ArchitecturesArchitectures

Cosmin Oancea (coancea@csd.uwo.ca)Cosmin Oancea (coancea@csd.uwo.ca)

Stephen Watt (watt@csd.uwo.ca)Stephen Watt (watt@csd.uwo.ca)

Motivation:Motivation:

Multilanguage ArchitecturesMultilanguage Architectures
components are developed independently, and then components are developed independently, and then
combined to construct applicationscombined to construct applications
have lagged behind in exposing new language ideashave lagged behind in exposing new language ideas

Our GoalsOur Goals
extend Software Component Architectures, making extend Software Component Architectures, making
them competitive for multi-language programming them competitive for multi-language programming
using modern language constructs efficiently using modern language constructs efficiently
assisted interface generation for generic librariesassisted interface generation for generic libraries
explore optimizations in multi-language environmentsexplore optimizations in multi-language environments
optimizations of deeply composed genericsoptimizations of deeply composed generics

Parametric PolymorphismParametric Polymorphism

one mechanism to support generic programmingone mechanism to support generic programming

increases the flexibility, reusability, expressive power, increases the flexibility, reusability, expressive power,
avoids the need for down-casting, and ensures type avoids the need for down-casting, and ensures type
inference termination in some higher order lang.inference termination in some higher order lang.

various semantics in different prog. lang. various semantics in different prog. lang.
(C++, Modula, GJ, Ada, ML, Aldor)(C++, Modula, GJ, Ada, ML, Aldor)

a general mechanism should accommodate both:a general mechanism should accommodate both:
compile and run time type instantiationcompile and run time type instantiation
qualified/free type variablesqualified/free type variables

Multilanguage EnvironmentsMultilanguage Environments

Extern CExtern C

Java Native InterfaceJava Native Interface

CORBACORBA

DCOMDCOM

.NET.NET

Parametric Polymorphism has become a common Parametric Polymorphism has become a common
feature of mainstream programming languages, feature of mainstream programming languages,
but SCAs have not as yet exposed itbut SCAs have not as yet exposed it

Early Experiment: FRISCO project Early Experiment: FRISCO project
(1997)(1997)

Objective: allow Aldor programs to make use of the Objective: allow Aldor programs to make use of the
PoSSo library (heavy use of C++ templates)PoSSo library (heavy use of C++ templates)

Aldor: strongly typed functional language, with a higher Aldor: strongly typed functional language, with a higher
order type system:order type system:

each value belongs to some unique type: its domain; each value belongs to some unique type: its domain;

domains can be created at run time by user defined functionsdomains can be created at run time by user defined functions

domains belong to type categories (can be statically determined)domains belong to type categories (can be statically determined)

explicit p.p. through dependent typesexplicit p.p. through dependent types

 vs.vs.
CDx ∈∈ CSx ⊂∈

Early Experiment (conclusions)Early Experiment (conclusions)

Through clever use of virtual functions, we were able to: Through clever use of virtual functions, we were able to:
produce proper binding time semantics by prototypic instantiation produce proper binding time semantics by prototypic instantiation
of templatesof templates
produce lightweight proxies to make hierarchies available on produce lightweight proxies to make hierarchies available on
either side of the language interfaceeither side of the language interface

Conclusions:Conclusions:
the C++/Aldor semantics gap can be overcomethe C++/Aldor semantics gap can be overcome
(objects vs. type-categories and compile vs. run time bindings for (objects vs. type-categories and compile vs. run time bindings for
generics)generics)
a general, well defined semantics for p.p. can be constructed a general, well defined semantics for p.p. can be constructed
(for which C++/Aldor mappings are particular solutions)(for which C++/Aldor mappings are particular solutions)

need a systematic solution that encompasses more languages need a systematic solution that encompasses more languages
GIDLGIDL

Introduction to GIDLIntroduction to GIDL
mappings to C++, GJ, Aldormappings to C++, GJ, Aldor

type variables may be qualified:type variables may be qualified:
extend based qualification T : Bextend based qualification T : B
export based qualification T :- Bexport based qualification T :- B

interface Foo { void foo(); };
interface Foo_extend : Foo {};
interface Foo_impl { void foo(); }; // not in an isA relation with Foo

interface Test<T1 : Foo, T2 :- Foo> { void print(T a); };
interface Main {
 Test< Foo_extend, Foo_extend > op1(); //OK
 Test< Foo_extend, Foo_impl > op2(); //OK
 Test< Foo_impl, Foo_impl > op3(); //Error
};

GIDL’ s model for genericsGIDL’ s model for generics

allows generic type qualificationsallows generic type qualifications
generic type has a well defined meaning (context independent) generic type has a well defined meaning (context independent)

precise, easily extensible GIDL specificationsprecise, easily extensible GIDL specifications

natural mappings to common prog. langs. within a small natural mappings to common prog. langs. within a small
overhead costoverhead cost

homogeneous implementation approach, based on a homogeneous implementation approach, based on a
type-erasure techniquetype-erasure technique

preserves backward compatibilitypreserves backward compatibility

works on top of any CORBA vendor implementationworks on top of any CORBA vendor implementation

Type CheckingType Checking
generic types are attached to GIDL interfacesgeneric types are attached to GIDL interfaces

the visibility scope is throughout the defining interfacethe visibility scope is throughout the defining interface

sub-typing is defined to be invariant with respect to the sub-typing is defined to be invariant with respect to the
type variablestype variables

List<S> List<T> , even if S T List<S> List<T> , even if S T

guarantees type checking termination for mutual recursive generic guarantees type checking termination for mutual recursive generic
type boundstype bounds

the extend qualification is stronger than the export one:the extend qualification is stronger than the export one:
interface Test0<C:Type1> {…};
interface Test1<A:-Type1>
 : Test0<A>{…}; //Error

⊄ ⊂

Type Checking ExampleType Checking Example
interface Comp<A> {
 boolean compare(in A a);
};

interface Double : Comp<Float> {…};
interface Float : Comp<Double> {…};

interface Comparator<A: Comp, B : Comp<A>> {
 Comparator<Comp, Comp<A>> op3(); //** Error
 Comparator<Double, Float> op4(); //* OK
}

//** Comp should extend Comp<Comp<A>>
// (False since then B==Comp<A>)
//* Double extends Comp<Float> by def., so true

GIDL translator outputGIDL translator output
erasure technique: GIDL => IDLerasure technique: GIDL => IDL

preserves the backward compatibilitypreserves the backward compatibility
translator works on top of any CORBA implementationtranslator works on top of any CORBA implementation
can generate proxies (extern C/JNI/…) and link them in a single can generate proxies (extern C/JNI/…) and link them in a single
process environmentprocess environment

opportunities for cross file, inter-language optimizationsopportunities for cross file, inter-language optimizations

recover the lost generic type information at the mapped recover the lost generic type information at the mapped
language skeleton/stub wrapper levellanguage skeleton/stub wrapper level

//GIDL
interface Test<T,
P:ExtQual, Q:-ExpQual> {
 T op1();
 P op2();
 Q op3(Test<T,P,Q> a);
};

//IDL
interface Test {
 any op1();
 ExtQual op2();
 Object op3(Test a);
};

GIDL Base Application ArchitectureGIDL Base Application Architecture

Client
(GJ/C++/Aldor)

Server
(GJ/C++/Aldor)

GIDL
Specification

GIDL Wrapper
Stub

GIDL Wrapper
Skeleton

GIDL
meth.
invoc.

return
wrap

params
return

IDL
Specification

IDL
Stub

IDL
Skeleton

CORBA ORB
Marshal the invocation to the skeleton

 Return the result to the client

un-wrap
params

Delegate ORB
to handle invoc.

wrap
result

Marshal
the return

Marshal
params

un-wrap
result

invoke
wrapper

 Marshal
 the return

Common
Language Runtime

Using the ArchitectureUsing the Architecture
Server side: inherits and implements the GIDL skeleton wrappersServer side: inherits and implements the GIDL skeleton wrappers

Most of the implementation details are hiddenMost of the implementation details are hidden

Now client/server may use generic programming as desiredNow client/server may use generic programming as desired
// GIDL Specification
interface GPriorElem<A:-GPriorElem<A>>
{
 short getPriority();
 short compareTo(in A r);
 A createNewA(in short s);
};

interface PriorElem :
 GPriorElem<PriorElem>{};

interface PriorQueue<A:-GPriorElem<A>>
{
 void enqueue(in A a); A dequeue();
 boolean empty(); short size();
 A createPriorElem(in short s);
};

// code excerpt from a C++ CLIENT
1. CORBA::Object_var obj = orb->string_to_object

(s);
2. GIDL::PriorQueue<GIDL::PriorElem> gpq

(pq_orig);
3. GIDL::PriorElem gPEobj = gpq.createPriorElem

(GIDL::Short_GIDL(1));
4. gpq.enqueue(gPEobj);
//Obtain a reference to a CORBA::Object – obj
5. gpq.enqueue(obj); //ERROR
6. gPEobj = gpq.dequeue();
7. GIDL::Short_GIDL sh = gPEobj.getPriority();
8. cout<<sh<<endl; //prints “ 1”

GIDL to C++ MappingGIDL to C++ Mapping

follows closely CORBA-C++ mapping ideas: scopes follows closely CORBA-C++ mapping ideas: scopes
scopes, modulesscopes, modules namespaces, interfaces namespaces, interfaces (generic) (generic)

classesclasses

C++ wrappers C++ wrappers (erased) CORBA reference (erased) CORBA reference
+ associated generic type inf. + two way casting + + associated generic type inf. + two way casting +
functionalityfunctionality

export/extend base qualification mapping introduce no export/extend base qualification mapping introduce no
run-time overheadrun-time overhead

their implementation relies on C++’ s static binding time their implementation relies on C++’ s static binding time

GIDL to C++ Mapping ExampleGIDL to C++ Mapping Example
// GIDL specification!!!
interface Foo { /*…*/ };
interface Test<T1:Foo, T2:-Foo, T3>
{ Foo op(in T1 t1, in T2 t2, in T3 t3, in Foo f); };

template<class T1, class T2, class T3> class
Test : virtual public ::GIDL::GIDL_Object {
 protected: ::Test_var* obj;
 private:
 virtual void implTestFunction() {
 if(1) return;
 T2 a_T2; T1 a_T1; Foo f = (Foo)a_T1;
 GIDL::String_GIDL t=a_T2.tostring();
 }
 public: Test(::Test_var ob) {
 obj = new ::Test_var(ob); implTestFunction();
 }
 static ::Test_var _narrow(Test<T1, T2, T3> o) {… }
 static Test<T1, T2, T3> _lift(CORBA::Object_var o) { …}
 static Test<T1, T2, T3> _any_lift(CORBA::Any_var a) {…}
 static CORBA::Any_var _any_narrow(Test<T1,T2,T3> w){…}

virtual GIDL::Foo op(T1 a1, T2 a2,
 T3 a3, GIDL::Foo a4) {
 ::Foo_var a = a1._narrow(a1);
 CORBA::Object_var b=
 a2._narrow(a2);
 CORBA::Any_var c=
 a3._any_narrow(a3);
 ::Foo_var d = a4._narrow(a4);
 ::Foo_var a0=(*obj)->op(a, b, c, d);
 GIDL::Foo ret; return ret._lift(a0);
}
}

GIDL to GJ MappingGIDL to GJ Mapping
same main ideas as the C++ mappingsame main ideas as the C++ mapping

user’ s help is required, as GJ does not support:user’ s help is required, as GJ does not support:
generic type object instantiation, generic type object instantiation,

reflective features for the generic types reflective features for the generic types

new scopes new scopes GJ packages GJ packages

GIDL’ s implicit parametric structures GIDL’ s implicit parametric structures generic classes generic classes

// GIDL specification
interface Base<C:Object, D, E> {
 typedef struct BaseStruct {
 C field_C;
 E field_E;
 };
};

package GIDL.Base; import GIDL.*;
public final class BaseStruct
<C extends GIDL_Object, E extends GIDL_Value>
implements GIDL_Value {
 private C c; private E e;
 private org.omg.CORBA.Object obj;
 public BaseStruct(C c, E e,
 org.omg.CORBA.Object ob){
 this.c=c; this.e=e; this.obj=ob;
 } /* … */ };

Export Qualification MappingExport Qualification Mapping
Most General Generic Unifier (MGGU)Most General Generic Unifier (MGGU)

<A:-Type> <A:-Type> compute the MGGU for A, compute the MGGU for A,
 w.r.t. all the types in the specificationw.r.t. all the types in the specification

use unification algo. to minimize the # of generic types use unification algo. to minimize the # of generic types
and the # of MGGUsand the # of MGGUs
preserve the inheritance hierarchy among MGGUspreserve the inheritance hierarchy among MGGUs

interface Tp1<A:-Tp1<A>> {…}; // A MGGU1
interface Tp2<B:-Tp2>: Tp1 {…}; // B MGGU2

interface Tp1<A implements MGGU1<A>> extends MGGU1<A>{…};
interface Tp2<B implements MGGU2> extends Tp1,
 MGGU2{…};

GJ

IFF

interface MGGU2<T> extends MGGU1<T> {…};

GJ

GIDL

MGGU (continuation)MGGU (continuation)

interface Element { tp0 op(in tp1 a, in tp2 b); };
interface GenEl1<T,P> { P op(in T a, in tp2 b); };
interface GenEl2<T,P> { tp0 op(in P a, in T b); };
interface Test<A:-Element> { /* use A */ };

interface MGGU<T,P,Q> { T op(in P a, in Q b); }

interface Element extends MGGU<tp0, tp1, tp2>{…}
interface GenEl1<T,P> extends MGGU<P, T, tp2>{…}
interface GenEl2<T,P> extends MGGU<tp0, P, T >{…}

interface Test<A implements MGGU<tp0, tp1, tp2>> {…}

GJ

GIDL

Semi-Automatic STL TranslationSemi-Automatic STL Translation

Library interface Library interface GIDL specification GIDL specification stub/ stub/
skeleton + implementation skeleton + implementation

(STL == black box (STL == black box scheme is applied). scheme is applied).

STL:STL:
6 components: containers, generic algorithms, 6 components: containers, generic algorithms,
iterators, function objects, adaptors, allocatorsiterators, function objects, adaptors, allocators
orthogonal components orthogonal components by using iterators (abstract by using iterators (abstract
data accessing methods)data accessing methods)

each container/algorithm provides/requires certain iterator’ s each container/algorithm provides/requires certain iterator’ s
categories – specified in English; we can do better with GIDLcategories – specified in English; we can do better with GIDL

1−TAT

Translation designTranslation design

interface InputIterator<T, It:-Iterators::InputIterator<T, It>> {…};

interface STLvector<T, Ite:-Iterators::RandAccessIterator<T,
Ite>,
 II:-Iterators::InputIterator<T,II> >{…};

interface InpIterator<T> : InputIterator<T, InpIterator<T>> {…};

enforces component orthogonality at the lang. levelenforces component orthogonality at the lang. level

iterators/containers design is non-intrusive (do not iterators/containers design is non-intrusive (do not
assume any inheritance relation)assume any inheritance relation)

Difficulties in Translating STLDifficulties in Translating STL

STL STL call by value; GIDL-STL application level call by value; GIDL-STL application level call by call by
referencereference

Provide Provide clone()clone() and and destroy()destroy() methods for GIDL-STL objects methods for GIDL-STL objects
(create/destroy CORBA objects).(create/destroy CORBA objects).

Big overhead when using iterators (since they are just supposed Big overhead when using iterators (since they are just supposed
to be pointers)to be pointers)

Optimization is needed!!!Optimization is needed!!!

//STL internal implementation
interface FindAlg<T, It:-InputIterator<T,It>>
{ It find(in It first, in It last, in T val); }

//C++ STL implementation for find:
while(first<last) {
 //……
 first++;
}

Multi-Language Environment Multi-Language Environment
Optimizations Optimizations

We have covered the declarative aspect: We have covered the declarative aspect:

way of having software typed in one programway of having software typed in one program

Ultimate goal: optimization of modules with p.p. in a Ultimate goal: optimization of modules with p.p. in a
multi-language environmentmulti-language environment

Inter-procedural, inter-file optimizations between programs in Inter-procedural, inter-file optimizations between programs in
different languages (inlining, …, etc.)different languages (inlining, …, etc.)

Macroscopic optimization: speculative(optimistic) / semantic driven Macroscopic optimization: speculative(optimistic) / semantic driven
optimizations (eg: library translation)optimizations (eg: library translation)

Conclusions:Conclusions:

Exposed parametric polymorphism to software Exposed parametric polymorphism to software
component architecturescomponent architectures

Qualification of type parameters can be enforced in Qualification of type parameters can be enforced in
various target languages, and come with small overhead various target languages, and come with small overhead
penaltypenalty

Semi-automatic generic library translationSemi-automatic generic library translation

Opportunity for inter-language optimizationsOpportunity for inter-language optimizations

