
Copyright © 2023 Xanadu Quantum Technologies Inc.

Accelerating large-scale dynamic quantum algorithms with 
just-in-time compilation



“Build quantum computers that are useful and accessible to 
people everywhere”

PennyLane is a Python 
library for programming quantum 
computers.

Catalyst is a JIT compiler 
for PennyLane programs.



  Copyright © 2023 Xanadu Quantum Technologies Inc. 

01
Towards a modern Quantum Compilation 
architecture

3



● Quantum device (hw or simulator)

● Circuit abstraction

○ Quantum gates 

○ Quantum bits (qubits)

○ Measurements

// How to program a quantum computer?

PennyLane is a Python 
library for programming quantum 
computers.



// PennyLane

Python user input

Python representation of the circuit



● Primarily Python-based software packages

● Programming at the level of quantum circuits

● Execution on simulators (CPU/GPU) and 
hardware (QPU)

● Execution on hardware involves:

○ Optimizing the circuit with runtime 
parameters

○ Serializing just the quantum component of 
the circuit via a human-readable 
intermediate representation

○ Submitting the circuit for execution via a 
cloud REST API

// What is quantum software today?



Catalyst is a JIT compiler 
for PennyLane programs.



8

// Catalyst

Python user input

Catalyst IR (MLIR with our own dialects)



● Static circuit (quantum only)

● The structure of the circuit is lost (for, 
while, cond)

● The circuit representation is recompiled 
for every different parameter

● Optimization is done at runtime 
(quantum only)

● Dynamic circuit (hybrid)

● The control flow is preserved

● The program is not recompiled when it 
does not need to.

● Optimization is done at compile time. 
(MLIR transformation passes)

9

// PennyLane versus Catalyst?



10

// Compiling algorithms with structure

● Preservation of the control flow (for 
loop over qubits)

● Optimization at compile time on a 
compact IR.



11

// Parametric compilation (escaping Python speedup)

● The circuit is not recompiled because 
parameters are of the same type.

● VQE needs the same circuit to be 
executed for a lot of parameters.



  Copyright © 2023 Xanadu Quantum Technologies Inc. 

02
Catalyst
Reimagining the quantum computing stack

12



  Copyright © 2023 Xanadu Quantum Technologies Inc. 13

// The Catalyst Stack
Frontend:

- PennyLane + Jax
- Dynamic programming model
- Python operator overloading
- Program capture

MLIR:

- Quantum autodiff
- Circuit optimizations
- Error mitigation

CodeGen:

- Leverage LLVM infrastructure
- Enzyme autodiff
- Binary code generation

Execution:

- Device-Host interactions
- Real-time classical processing
- Dynamic instruction dispatch
- Runtime circuit generation



  Copyright © 2023 Xanadu Quantum Technologies Inc. 14

// The Catalyst Stack
Frontend:

- PennyLane + Jax
- Dynamic programming model
- Python operator overloading
- Program capture

MLIR:

- Quantum autodiff
- Quantum circuit optimization
- Error mitigation

CodeGen:

- Leverage LLVM infrastructure
- Enzyme autodiff
- Binary code generation

Execution:

- Device-Host interactions
- Real-time classical processing
- Dynamic instruction dispatch
- Runtime circuit generation



  Copyright © 2023 Xanadu Quantum Technologies Inc. 15

// The Catalyst Stack
Frontend:

- PennyLane + Jax
- Dynamic programming model
- Python operator overloading
- Program capture

MLIR:

- Quantum autodiff
- Quantum circuit optimizations
- Error mitigation

CodeGen:

- Leverage LLVM infrastructure
- Enzyme autodiff
- Binary code generation

Execution:

- Device-Host interactions
- Real-time classical processing
- Dynamic instruction dispatch
- Runtime circuit generation



  Copyright © 2023 Xanadu Quantum Technologies Inc. 

// Peephole Optimization example

16

LogicalResult Fusion::match(UnitaryOp op)

{

    ValueRange qbs = op.getInQubits();

    Operation *parent = qbs[0].getDefiningOp();

   

    if (!isa<UnitaryOp>(parent))

        return failure();

   

    for (auto qb : qbs)

        if (qb.getDefiningOp() != parent)

            return failure();

    return success();

}

Transformation pass of the quantum dialect

Match operations:

● Pattern rewriting framework

● `match` → `replace`

MLIR C++ → 



  Copyright © 2023 Xanadu Quantum Technologies Inc. 

void Fusion::rewrite(UnitaryOp op, PatternRewriter &rewriter)

{

    ValueRange qbs = op.getInQubits();

    UnitaryOp parent = cast<UnitaryOp>(qbs[0].getDefiningOp());

    Value m1 = op.getMatrix();

    Value m2 = parent.getMatrix();

    Value res = rewriter.create<linalg::MatmulOp>(op.getLoc(),

        {m1, m2}).getResult();

    rewriter.updateRootInPlace(op, [&] { op->setOperand(0, res); });

    rewriter.replaceOp(parent, parent.getResults());

}

// Peephole Optimization example

17

Rewrite operations:

● Graph traversal

● Qubit value semantics

C++ for MLIR → 



  Copyright © 2023 Xanadu Quantum Technologies Inc. 

// Peephole optimization library

18

● Merge rotations pass

● Cancel inverses pass (hermitian 
gates)



  Copyright © 2023 Xanadu Quantum Technologies Inc. 19

// The Catalyst Stack
Frontend:

- PennyLane + Jax
- Dynamic programming model
- Python operator overloading
- Program capture

MLIR:

- Quantum autodiff
- Quantum circuit optimization
- Error mitigation

CodeGen:

- Leverage LLVM infrastructure
- Enzyme autodiff
- Binary code generation

Execution:

- Device-Host interactions
- Real-time classical processing
- Dynamic instruction dispatch
- Runtime circuit generation



20

// Derivatives of hybrid functions with Catalyst

20

Cost function 
with Catalyst 
gradient

JIT-compatible 
optimizer

Optimization 
loop



21

// The gradient dialect
● All gradient operations lower to the BackPropOp in the gradient dialect.

● Enzyme: https://github.com/EnzymeAD/Enzyme

● The gradient dialect contains passes to lower our MLIR to Enzyme calls in LLVM.

○ Bufferization

○ Destination passing style

○ Register gradient rules for the quantum parts

○ Generate __enzyme_autodiff function calls

● Enzyme drives the generation of the derivative code in LLVM.

https://github.com/EnzymeAD/Enzyme


  Copyright © 2023 Xanadu Quantum Technologies Inc. 22

// The Catalyst Stack
Frontend:

- PennyLane + Jax
- Dynamic programming model
- Python operator overloading
- Program capture

MLIR:

- Quantum autodiff
- Quantum circuit optimization
- Error mitigation

CodeGen:

- Leverage LLVM infrastructure
- Enzyme autodiff
- Binary code generation

Execution:

- Device-Host interactions
- Real-time classical processing
- Dynamic instruction dispatch
- Runtime circuit generation



  Copyright © 2023 Xanadu Quantum Technologies Inc. 23

// The Execution Stack

Runtime Library:

- Thin layer between “QIR” and device backends

- Memory management & Error handling

- Quantum device instantiation and dispatching

- Asynchronous execution

- Real-time measurement feedback

- Runtime circuit generation for cloud execution

void __catalyst__qis__Hadamard(QUBIT *)

void __catalyst__qis__CNOT(QUBIT *, QUBIT *)

RESULT *__catalyst__qis__Measure(QUBIT *)

ObsIdType __catalyst__qis__TensorObs(int64_t, ...)

double __catalyst__qis__Expval(ObsIdType)



Thank you

Copyright © 2023 Xanadu Quantum Technologies Inc. 

David Ittah
davidi@xanadu.ai

GitHub
https://github.com/PennyLaneAI/catalyst

Romain Moyard
romain@xanadu.ai

Erick Ochoa Lopez
erick.ochoalopez@xanadu.ai

https://github.com/PennyLaneAI/catalyst

