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UNB Motivation
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§ Spatial Data is increasing at a rapid rate.

[2]

[3]
[4]

[1] https://www.flaticon.com/free-icon 
[2] https://oceanservice.noaa.gov/facts/remotesensing.html
[3] https://globalocean.noaa.gov/research/argo-program/
[4] https://www.picketa.com/

[1]

§ Map based app – Google Maps

§ Geo-Social app - Facebook
§ Ocean data – Argo Data 
§ Remote sensing data
§ Agriculture Tech – Picketa Systems
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§ RDBMS are popular, partly due to SQL.

§ RDBMS follow Volcano Model for query execution.

§ Main focus was to minimize disk I/O and CPU 
utilization was less important, bottleneck on modern 
CPUs

§ “To go 10X faster, the engine must execute 90% fewer 
instructions and yet still get the work done. To go 100X 
faster, it must execute 99% fewer instructions” -
Hekaton
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§ Query Compilation based query processing, offers 
significant benefits but complicated to incorporate.

§ PostgreSQL supports just-in-time (JIT) query 
compilation for tuple materialization and 
expression evaluation only.

§ Query compilation for spatial workload could add 
more complexities. LB-2 Spatial proposed a 
generative query compilation approach but only 
support MBR based spatial query execution and is 
based on single node.
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• Pull-Based Query Execution
– Volcano/Iterator model

• Push-Based Query Execution



UNB Pull-Based Model
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• Tuple-at-a-time
• Each operator implements a common interface:
– open()
– next()
– close()



UNB Sample query - Pull-Based

Logical plan 

A.d

A.a = B.b

A

B

p

A.c = 35
s

⋈

if (child.next())
emit(child.next())

if (left.next())
t1 = left.next()
buildHashtable(t1); 

else if (right.next()) {
t2 = right.next()
t1 = probeHashtable(t2)
if (t1)

emit(t1, t2)
}

If (recordFile.next())
emit(recordFile.next())

if (child.next())
t = child.next()
if (predicate.satisfy(t))

emit(t)
}

A

B

A.dp

A.c = 35s

A.a = B.b⋈

If (recordFile.next())
emit(recordFile.next())



UNB Pull-Based Model - limitations
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• Millions of virtual function calls

• Control flow constantly changes between operators

• Generated code can be too big with many conditions and 
branches

• Branch prediction and cache locality suffer

• Solution?
– Push-Based Model
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• Each operator has two interfaces:
– produce():  asks the operator to produce tuples and push it up
– consume(): accepts the tuples and pushes further up

• The functions are not really called
– they only exist conceptually during code generation

consume consume consume consume

ResultAggregationTableScan Selection

produce produce produce

CodeGen
Module

produce



UNB Push-Based Model

• Operator boundaries are 
determined by conceptual 
“pipelines”
• Instead of iterating, we 

push up the pipeline

• Within a pipeline, a tight 
loops performs a number 
of operations

• Data is taken out at a 
pipeline breaker and 
materialized into the next

A

A.c = 35s B

A.dp

A.a = B.b⋈

Pipeline P2

Pipeline P1



UNB Sample query - Push-Based

for t in A:
if (t.c == 35)

materialize t in Hashtable HT

for t2 in B:
t1 = probeHashtable(HT, t2)
if (t1) 

emit(t1.d)

A

B

A.dp

A.c = 35s

A.a = B.b⋈

Pipeline P2

Pipeline P1

P1

P2



UNB Query Compilation – Using Push-based Model
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• No virtual functions calls

• Better data locality – “real code inlining”
– Operators act upon data in CPU registers

• Operator fusion

• Code specialization

• Compiler optimizations, like loop unrolling and loop-
invariant code motion
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• Data representing location, shape, relationship with 
other object in a space

• Vector Data : points, lines and polygons

• Raster Data: grid data, with each grid represent some 
value



UNB Spatial Data
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UNB Spatial Functions
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UNB Spatial Partitioning
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• Dividing a spatial region 
into sub-regions 
(partitions/tiles)

• Efficiently organize and 
process the data

* Image from Filipiak, Dominik & Węcel, Krzysztof & Stróżyna, Milena & Michalak, Michał & Abramowicz, Witold. (2020). 
Extracting Maritime Traffic Networks from AIS Data Using Evolutionary Algorithm. Business & Information Systems 
Engineering. 62. 10.1007/s12599-020-00661-0. 
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Spatial Join: finds object pairs from two tables, which 
satisfies a spatial predicate like ST_INTERSECTS



UNB Spatial Query Processing
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§ Spatial Range Join: finds object pair where the objects are 
within a defined radius of the other object (query object) 
from the other table. ST_DWITHIN



UNB Spatial Query Processing
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Spatial Distance Join: finds object pairs that satisfy a 
particular distance unit. ST_DISTANCE

x > 5 && x < 10

x > 5 && x < 10

x > 5 && x < 10



UNB Outline

• Motivation

• Background

• Our system

• Evaluation

• Conclusions 

22



UNB Our System - CasaDB
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UNB Index Organization
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UNB Morsel-driven Parallelism (MDP)
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§ Parallelism by running the operator pipelines in parallel on 
separate threads.

§ MDP divides data into small chunks called “morsels”.

§ MDP’s dispatcher spawns a fixed number of workers and 
each of these workers is assigned a morsel. 

§ MDP’s dispatcher provides dynamic task scheduling, load 
balancing and parallelism.



UNB Morsel Driven Parallelism (MDP) for 
Spatial Data
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§ MDP works well for non-spatial workload.

§ For a tile-based Spatial workload
§ How to define morsel?
§ How to handle processing skew within morsels?



UNB Morsel Driven Parallelism (MDP) for 
Spatial Data
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§ Monolithic Tile-based Morsel Driven Parallelism (MTMP)

§ Granular Tile-based Morsel Driven Parallelism (GTMP)



UNB Monolithic Tile-based Morsel Driven 
Parallelism (MTMP)
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UNB Granular Tile-based Morsel Driven 
Parallelism (GTMP)
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UNB Spatial Join Processing - MTMP
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Dispatcher
WorkerWorkerWorkerWorker

Ask Work

Work
With Morsels Predicate 

Evaluation
Send result

Morsel Creation



UNB Spatial Join Processing - GTMP
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Dispatcher
WorkerWorkerWorkerWorker

Ask Work

Work

With Granules
Filtering Phase

Send result

Granules Creation

Predicate Evaluation
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UNB Experimental Setup
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§ Cluster of 6 machines, Dual-Core AMD Opteron Processor 
2222 clocked at 3 GHz and 16 GB main memory with 
Ubuntu 16.06

§ Apache Sedona v1.4.0, Citus v12.1



UNB Experimental Setup - Dataset
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TIGER Dataset
§ U.S. Census Bureau’s geographic spatial data 
§ Contains spatial information about various geographic 

features in the United State, such as roads, rivers, 
railroads, boundaries, landmarks, and more



UNB Experimental Setup - Queries
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TIGER 
Queries



UNB Experimental Setup - Dataset
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OSM UK Dataset
§ OpenStreetMap(OSM) is a free map data provided by the 

website openstreetmap.org. 
§ Contains spatial information about various geographic 

features in the United Kingdome, such as roads, buildings, 
waterways, water bodies, etc.



UNB Experimental Setup - Queries
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OSM 
Queries



UNB Code Generation Time
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UNB Code Compilation Time
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UNB GTMP vs MTMP
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Performance analysis of GTMP vs MTMP – Conclusion

§ For most of the queries GTMP and MTMP performs similar

§ In case of skew GTMP performs better than MTMP

§ Spatial Range Join and Spatial Distance Join performs 
better on GTMP than MTMP



UNB CasaDB vs Citus vs Apache Sedona
TIGER Dataset

41



UNB CasaDB vs Citus vs Apache Sedona
OSM Dataset
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UNB CasaDB vs Citus vs Apache Sedona
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§ CasaDB is 4x faster on average, than Citus and 308x faster 
on an average, than Apache Sedona on TIGER dataset. 

§ CasaDB is at least 7.3x faster on an average, than Sedona
and atmost 1.5x faster than Citus on OSM dataset. 
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UNB Conclusion
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§ Presents a compilation-based distributed spatial query 
processing engine for CasaDB.

§ Proposed two new morsel parallelism-based algorithms, 
Monolithic Tile based Morsel Parallelism (MTMP) and 
Granular Tile based Morsel Parallelism (GTMP).

§ Presented two Index organization techniques, Global 
Index and Tile-based Index and how they can be used with 
different kinds of spatial joins. 
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§ CasaDB is 4x faster than Citus and 308x faster than 
Apache Sedona on TIGER dataset, and on OSM dataset 
CasaDB is almost 1.5x faster than Citus and 7.3x faster 
than Apache Sedona. 
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Thanks!
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UNB Query Processing
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• What happens with SQL query?
– Goal: translate SQL query to an executable plan and run it
– Steps:

• Parsing and validation
• Optimization
• Execution

* Image from Abraham Silberschatz, Henry F. Korth, and S. Sudarshan, Database system
concepts, 6 ed., McGraw-Hill, New York, 2010.



UNB Query Processing - Sample query

QUERY:
SELECT A.d
FROM     A, B
WHERE  A.a = B.b 

AND A.c = 35

TABLES:
A(a,c,d)
B(b,e,f)

Logical plan 

A.d

A.a = B.b

A

B

p

A.c = 35
s

⋈



UNB Sample query - Push-Based

• Compiled code generated from SQL query

QUERY:
SELECT A.d
FROM     A, B
WHERE  A.a = B.b 

AND A.c = 35

TABLES:
A(a,c,d)
B(b,e,f)

for t in A:
if (t.c == 35)

materialize t in Hashtable HT

for t2 in B:
t1 = probeHashtable(HT, t2)
if (t1) 

emit(t1.d)
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• Distributed-Shared Memory 
– Easy programmability and data referencing (global address 

space)
– Good performance and data locality (partitioning)

C1

M
1

C4C3C2

M
2

M
3

M
4



UNB PGAS

52



UNB UPC++
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• Why UPC++-based Compiled Query Plans?
– UPC++ is a C++ library that supports PGAS

programming model

– All accesses made to remote memory are explicit

– All remote memory access operations are asynchronous

– Enable developers to write code that performs well at scale

– Minimal changes in the generated query plan code
• Scalable to hundreds of nodes
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UNB GTMP vs MTMP
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UNB Spatial Range Processing - MTMP
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Dispatcher
WorkerWorkerWorkerWorker

Ask Work

Work

With Morsels

Send result

Morsel Creation

Filtering Phase 
(Query window is 
the morsel with 

buffer)

Predicate Evaluation



UNB Spatial Range Processing - GTMP
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Dispatcher
WorkerWorkerWorkerWorker

Ask Work

Work

With Granules

Send result

Filtering Phase 
(Query window is 
the granule with 

buffer)

Predicate Evaluation

Granules Creation



UNB Spatial Distance Processing - MTMP

60

Dispatcher
WorkerWorkerWorkerWorker

Ask Work

Work

With Morsels

Send re
sult

Predicate EvaluationMorsel Creation



UNB Spatial Distance Processing - GTMP
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Dispatcher
WorkerWorkerWorkerWorker

Ask Work

Work

With Morsels

Send result

Predicate EvaluationGranules Creation



UNB Sample query - Push-Based

Logical plan 

A.d

A.a = B.b

A

B

p

A.c = 35
s

⋈

A

A.c = 35s B

A.dp

A.a = B.b⋈

Pipeline P2

Pipeline P1


