## Improving Locality in Consecutive Sparse and Dense Matrix Multiplications

Mohammad Mahdi Salehi, Kazem Cheshmi

Electrical and Computer Engineering McMaster University

### Outline

- Motivation
- Prior Work
- Methodology
- Experimental Results

# Motivation

Improving Locality in Consecutive Sparse and Dense Matrix Multiplications

#### **Consecutive Matrix Multiplications**

- Common Pairs:
  - GeMM-SpMMSpMM-SpMM
- Machine Learning
  - $\odot$  Sparse Matrices:
    - Graph neural networks(graph adjacency matrix)
    - Sparse neural networks(pruned weights)
- Linear Solvers
- Power Methods



#### GeMM-VecOp: Fusion Opportunities

- Example: • Y = A \* X • Z = VecOp<sub>rows</sub>(Y) z1 = sum(a1,..,a4) z2 = sum(b1,...,b4)
- Why should we perform fusion?

   Enables Reuse of each row.
   Small fast memory.



#### GeMM-GeMM: Fusion Opportunities

- Example:
   Y = A \* X
   Z = B \* Y
- [i1,...,i4] = [e1,...,e4] \* Y
- Need to read all data in the Y matrix -> not able to use fast memory.

|    |    |    |    |   | - |   |   |   |   | _ | _ |   | _ |
|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| a1 | a2 | а3 | a4 |   |   |   |   | • |   |   |   |   |   |
| b1 | b2 | b3 | b4 | _ | • | • | • | • | v |   |   |   |   |
| c1 | c2 | c3 | c4 | _ | • | • | • | • | • |   |   |   |   |
| d1 | d2 | d3 | d4 |   | • | • | • | • |   |   |   |   |   |
|    |    | Y  |    |   |   |   | A |   |   |   |   | Х |   |

| i1 | i2 | i3 | i4 |   |  |  |
|----|----|----|----|---|--|--|
| k1 | k2 | k3 | k4 | _ |  |  |
| m1 | m2 | m3 | m4 | _ |  |  |
| n1 | n2 | n3 | n4 |   |  |  |
| Z  |    |    |    |   |  |  |

| e1 | e2 | e3 | e4 |
|----|----|----|----|
| f1 | f2 | f3 | f4 |
| g1 | g2 | g3 | g4 |
| h1 | h2 | h3 | h4 |
|    | F  | 3  |    |

|   |    |    |    | -  |
|---|----|----|----|----|
|   | a1 | a2 | a3 | a4 |
| ~ | b1 | b2 | b3 | b4 |
| ^ | c1 | c2 | c3 | c4 |
|   | d1 | d2 | d3 | d4 |
|   |    |    |    |    |

Y

### GeMM-SpMM: Fusion Opportunities

• Example:  $\circ Y = A * X$ 

 $\circ Z = B * Y$ 

- Sparsity removes need to some parts of intermediate data.
- Intermediate data has reuse potential.
- Sparsity need to be analyzed before the operations.







Х

Х



| e1 | e2 |    |    |
|----|----|----|----|
|    |    | f3 |    |
| g1 | g2 |    |    |
| h1 |    |    | h4 |

B

| a1 | a2 | a3 | a4 |
|----|----|----|----|
| b1 | b2 | b3 | b4 |
| c1 | c2 | c3 | c4 |
| d1 | d2 | d3 | d4 |

Y

#### Static Sparsity: Amortizing Cost

- Sparsity analysis cost. Ex.: O(nnz) for GeMM-SpMM
- Scheduling cost
- Amortizing the cost when we have repetitive executions.

#### **End-to-end Results**

- Result of applying our methodology to full-batch GCN training(Fusing GeMM-SpMM)
- GeMM: linear transformation
- SpMM: graph aggregation



Tile fusion has achieved 2.33 average speedup over PyTorch Geometric (PyG).

# **Prior Work**

Improving Locality in Consecutive Sparse and Dense Matrix Multiplications

#### GeMM-SpMM DAG

- We create a DAG for representing data dependences to schedule operations.
- Y = B \* C
- Z = A \* Y



DAG G



Α

### Run-time Schedulers: Atomic Tiling

- Fine-grained load balanced tiles
- Atomic instructions
- Idle threads



#### DAG G

#### Driven by sparse tiling:

C. D. Krieger et al., "Loop Chaining: A Programming Abstraction for Balancing Locality and Parallelism," *2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum*, Cambridge, MA, USA, 2013, pp. 375-384, doi: 10.1109/IPDPSW.2013.68.



## Run-time Schedulers: Overlapped Tiling

- No synchronization barrier
- Redundant computations





DAG G

Atomic instruction: Not Needed Synchronization barriers: 0 Overlapped computations: 3

#### Driven by communication avoiding:

JamesDemmel,MarkHoemmen,MarghoobMohiyuddin,andKather- ine Yelick. 2008. Avoiding communication in sparse matrix computations. In 2008 IEEE International Symposium on Parallel and Distributed Processing. IEEE, 1–12.

#### **Run-time Schedulers: Tile Fusion**

- No atomic Instruction
- No redundant operations
- Load balanced variable tile sizes
- Synchronization barrier



Thread 0 Thread 1 Thread 2 5 9 6 3 4 8 3) 6 9 2 8 T<sub>0,0</sub> T<sub>0,1</sub> T<sub>0,2</sub> 5 7

Atomic instruction: Not Needed Synchronization barriers: 1 Overlapped computations: 0

DAG G

# Methodology

Improving Locality in Consecutive Sparse and Dense Matrix Multiplications

#### **Tile Fusion**



### **Tile Fusion**

• Coarse-grained tiles



- Fused ratio
- 2893 suit sparse matrices

   34% fused ratio on average for coarse tiles.
   Coarse tile: tile size = 2048



 $fused\ ratio = \frac{Number\ of\ fused\ computations}{Number\ of\ all\ computations}$ 

#### Scheduler Example: GeMM-SpMM



Step 20: Optor Stelessain Tile Fusion

10

(5)5)

3)

4

4

(8)(8)(9)

# **Experimental Results**

Improving Locality in Consecutive Sparse and Dense Matrix Multiplications

#### **Experiment Setup**

- Intel Icelake architucture with 40 cores
- Single operation experiments(GeMM-SpMM, SpMM-SpMM)

 $\circ$  230 matrices from suitsparse collection

 $_{\odot}$  Compared with prior works and best of tensor compilers(LNR, TACO)  $_{\odot}$  Compared with Intel Math Kernel Library (MKL)

• End-to-end experiment

 $\odot$  2 Layer GCN full batch training with 100 epochs

 $\odot$  For chosen GNN benchmark graphs

Compared with pytorch\_geometric

# Results: Single Operation vs Fused Implementations



Tile fusion has achieved 3.5 average speedup over best of fused implementations.

# Results: Single Operation vs Unfused MKL

• GeMM-SpMM



Tile fusion has achieved 1.42 average speedup over unfused MKL.

### Application: GCN training

- Aimed for Sparse matrix multiplications when sparsity is static for several executions of a kernel.
- Example: Graph Convolutional Networks Training

$$H^{(l+1)} = \sigma \left( \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

• When training a graph this can be seen as \* (H \* W) which can be interpreted as two consecutive tensor contraction kernels:

GeMM-SpMM

#### **End-to-end Results**



Tile fusion has achieved 2.33 average speedup over PyTorch Geometric (PyG).

| Id | Name                  | Vertices  | Edges       |
|----|-----------------------|-----------|-------------|
| 0  | Amazon2k [27]         | 303,296   | 586,902     |
| 1  | Coauthor CS [33]      | 18,333    | 163,788     |
| 2  | Coauthor Physics [33] | 34,493    | 495,924     |
| 3  | Cora [5]              | 19,793    | 63,421      |
| 4  | DeezerEurope [32]     | 28,281    | 185,504     |
| 5  | Facebook [31]         | 22,470    | 342,004     |
| 6  | Flickr [41]           | 89,250    | 899,756     |
| 7  | Github [31]           | 37,700    | 578,006     |
| 8  | OGBN Arxiv [17]       | 232,965   | 114,615,892 |
| 9  | OGBN products [17]    | 2,449,029 | 123,718,152 |
| 10 | OGBN proteins [17]    | 132,534   | 79,122,504  |
| 11 | PPI [43]              | 56,944    | 818,716     |
| 12 | Reddit [41]           | 232,965   | 23,213,838  |
| 13 | Yelp [41]             | 716,847   | 13,954,819  |