
OOPredictor

Hassan Arafat

David Bremner

Kenneth Kent

Julian Wang

2024/11/12

CDP @ CASCON

Predicting Object-Oriented Accesses using

Static Analysis

Motivation

 The memory/CPU gap is growing.

Caches used to mitigate the effects of the gap.

Cache performance depends on the locality of access.

Modern CPUs attempt to schedule around long loads.

 If scheduling cannot buy time, the CPU is forced to stall.

 Load stalls cause reduced performance.

OOPredictor Hassan S. A. Arafat

2

Background

 Prefetching: speculatively load data the CPU is

expected to soon use.

 Better ordering of objects on memory, increasing spatial

locality.

Object-Oriented accesses cause a lot of hard-to-predict

pointer chasing patterns.

 Prior knowledge of those patterns can be used by a

myriad of optimizations.

OOPredictor Hassan S. A. Arafat

3

Literature Review

 Data Aware GC that can use data collected during

profiling to better guide the GC (Chilimbi et al. 1998;

Chen et al. 2006; Serrano et al. 2009).

Markov chains show the least fluctuations when

modelling of database accesses of object-oriented

applications (Garbatov and Cachopo 2011).

 Using static analysis to make regexes to model access

patterns, then restructure the way objects in memory are

allocated in C++ (Jeon et al. 2007).

OOPredictor Hassan S. A. Arafat

4

Shortcomings

 Profiling fine-grain information is expensive, even when

cost mitigation strategies are employed.

 Profiling can require an ahead-of-time profiling run.

 Previous work on prediction models didn’t address

memory Object-Oriented accesses, only database

accesses.

 Regular Expressions are limited in the amount of

information they provide.

OOPredictor Hassan S. A. Arafat

5

Design goals

 Predict the Object-Oriented access pattern.

 No added profiling cost.

Model branch biases.

Markov chain output.

 Implement as an optimization within Eclipse OMR, used

with Eclipse OpenJ9 .

OOPredictor Hassan S. A. Arafat

6

Basic operation

 Static analysis is traditionally used to enable beneficial

code transformation, e.g., code motion.

Can be used to predict how the program accesses

objects of a certain type.

 In JIT environments, readily available profiling data can

be used to increase prediction accuracy.

 That information can then be used to find a better order

of related objects in memory.

OOPredictor Hassan S. A. Arafat

7

Statically Derive Access Patterns

 Static analysis at compile time.

 No effect on program running time.

 Process the Control Flow Graph (CFG) already built by
the optimizer.

 Record accesses to object fields that are references.

 Block frequency information used to assign weights.

 Remove the blocks that don’t have any Object-
Oriented accesses while retaining their control flow
information.

OOPredictor Hassan S. A. Arafat

8

Evaluation

 Instrument the OpenJ9 interpreter to record every

getfield and putfield to reference fields.

 Perform two runs, one with the predictor optimization

enabled, one with instrumented interpreter.

 Evaluated our predictor using the Renaissance

benchmark suite.

 Also use SPECJBB2015 and SPECJBB2005 for business-like

workloads.

OOPredictor Hassan S. A. Arafat

9

Metrics

We use two metrics to characterize the accuracy of

the predictor models:

 Termination rate: The percentage of calls that ended

with the model in a final state.

OO match rate: The percentage of object-oriented

accesses that were correctly predicted by the model.

We will be visualizing the data as violin plots that show

the arithmetic mean, median, 1st quartile, 3rd quartile

and a Kernel Density Estimation (KDE) on top.

OOPredictor Hassan S. A. Arafat

10

Apache-spark results

OOPredictor Hassan S. A. Arafat

11

Apache-spark results, cont’d

OOPredictor Hassan S. A. Arafat

12

Functional results

OOPredictor Hassan S. A. Arafat

13

Functional results, cont’d

OOPredictor Hassan S. A. Arafat

14

Conclusion

 Load stalls adversely affect performance.

Current approaches require profiling/ access barriers.

We can derive access patterns with static analysis.

 The predictor performs very well for some methods, but

very poorly for others.

 The predictor can be used to guide minimally intrusive

optimizations that have a low cost of wrong prediction.

OOPredictor Hassan S. A. Arafat

15

	Slide 1: OOPredictor
	Slide 2: Motivation
	Slide 3: Background
	Slide 4: Literature Review
	Slide 5: Shortcomings
	Slide 6: Design goals
	Slide 7: Basic operation
	Slide 8: Statically Derive Access Patterns
	Slide 9: Evaluation
	Slide 10: Metrics
	Slide 11: Apache-spark results
	Slide 12: Apache-spark results, cont’d
	Slide 13: Functional results
	Slide 14: Functional results, cont’d
	Slide 15: Conclusion

