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• There is another crucial part of our model that is missing, and that 
is the mapping between virtual and memory addresses.

• The addresses that our program accesses are virtual memory 
address and the MMU needs to map those addresses to actual 
physical address in the main memory to access them.
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Inside the MMU
• Virtual addresses are translated to physical addresses at page 

level granularity.
• There are multiple different organization on how this mapping 

(page table) is stored.
• Radix tables
• Hash based

• Needs to be performed on every memory access, so needs to be 
fast. How do CPU designers make things fast? Caching.

• The structure that caches these translations is called TLB or 
translation lookaside buffer.
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• TLB entries are a scarce resource especially in large-scale 
multiprocess applications.

• TLB misses together with I-cache misses means that often in large 
scale application it’s a challenge to keep the CPU fed with 
instructions.

• In most programs there are certain sections of code that are 
executed more frequently (called hot) than others (called cold)

• We can reduce the effective working set of the program code by 
arranging these hot section in a way that minimizes the number of 
memory pages they span, 

• This effectively reduces the number of entries the TLB must cache 
simultaneously to keep the CPU fed with instructions.
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Example
• Let’s assume our program spans 2 memory pages.

Unoptimized organization Optimized organization
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RISC ISAs have another problem.
• Since each instruction is fixed length, there are only so many bits 

left to store the offset of the branch target.
• This means the instruction sequence for calling your function 

depends on how far away in your memory space is the callee from 
the caller.

• If there are a lot of trampolines on your hot path, they can take up 
a non-trivial proportion of execution time.
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Existing alternative solution
• llvm-BOLT
• BOLT is a binary optimizer that takes in a sample-based profile of the 

application and then optimizes a program binary based on that profile.
• Performs function ordering but also a bunch of other optimizations.
• Currently only supports x86 and AArch64 platforms.
• Let’s see an example workflow of optimizing a binary with BOLT.
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Example BOLT workflow
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• That extra profiling and another optimization step adds a lot of 
complexity to the build and deployment pipeline.

• This extra complexity is not without benefits for BOLT’s design 
goals.

• But if we are just focused on binary layout improvement through 
function placement then there is a simpler approach.

• What information do we actually need to come up with a better 
function ordering?
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Function ordering problem formulation
• A call graph for an application is a directed weighted graph where 

the nodes represent functions in the application and the edges 
represent the caller-callee relationships. 

• The weight of a given edge represents how many times that 
particular caller-callee relationship was exercised during a 
dynamic execution of a program.

• Note that the call graph depends on the dynamic execution of the 
program. In other words, the same program can have two different 
call graphs depending on program input.
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What now?
• Once we have the call graph, the problem of choosing a function 

ordering is can be formulated as choosing a sequence of nodes 
that minimizes some cost or using some other heuristic to choose 
which nodes should be adjacent in the ordering that we produce.

• For the purposes of this talk, we treat the actual algorithm as a 
black box. For more details on the actual algorithm, see the 
following papers.

• Pettis K., Hansen R.C., “Profile guided code positioning”, SIGPLAN 
Not. 25 (6) (1990) 16–27,.

• G. Ottoni and B. Maher, "Optimizing function placement for large-
scale data-center applications," 2017 IEEE/ACM International 
Symposium on Code Generation and Optimization (CGO), Austin, 
TX, USA, 2017, pp. 233-244, doi: 10.1109/CGO.2017.7863743.
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Looking back at the PGO workflow
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At this stage we have the information 
we need to produce a call graph.

Almost…
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• Since we know how many times a given basic block is executed, if 
that BB contains a call instruction, we know how many times that 
call instruction was executed. 

• The sum of execution counts of all call instructions in a given 
function to a callee is the weight of the edge from that function to 
the callee.

• The problem once again is that we only see a subset of a program 
at a time, therefore we never see the call graph for the entire 
program at once during the compilation process.
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Solution
• We need to gather “partial call graphs” during compile steps and 

then later combine them all together to form a single call graph for 
the entire program.

• To achieve this, we embed the partial call graph from each 
compilation unit into its object file by serializing it writing it to the 
comment section of the produced XCOFF file.

• Then just before we link the binary together, we read in all the 
object files, extract the partial call graphs, resolve all the 
references and then pass our global call graph to our algorithm to 
get a function ordering then use it to choose a better layout.
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Partial call graph example
• Let’s say we have the following two compilation units in our 

program.
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• We still need the first profile gathering step.
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23



main.c

hello.c

clang

clang

main.opt.o

hello.opt.o

Prog.profile llvm-ordergen

24



Inside llvm-ordergen
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The task that llvm-ordergen must do at this point is pretty similar to that of a linker,
 i.e. symbol resolution
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Getting symbol resolution info from the linker
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Inside llvm-ordergen
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What does this solution give us?
• No extra profile step, we reuse the same profile information as a 

regular clang PGO build.
• The compiler driver can co-ordinate the order file generation 

process, making the feature completely transparent to the 
user/build system provided the program is linked through the 
compiler.

• For the user, the process is as simple as enabling a compiler flag.
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• Baseline: O3 with PGO
• Training workload: insensitive
• 3.6% performance improvement over the baseline.
• Improvements in the compiler frontend.

Performance Evaluation
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Thank you.

Dhanrajbir Singh Hira
University of Alberta
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