
Bringing Profile Guided 
Function Placement to AIX

Dhanrajbir Singh Hira
J. Nelson Amaral

University of Alberta

1



CPU

L1 Data
Cache

L2 Cache

Code and data in main memory

L1 Instruction 
Cache

Memory references to get 
code that describes the 
computation.

Memory 
references to get 
data for 
computation.

2



• There is another crucial part of our model that is missing, and that 
is the mapping between virtual and memory addresses.

• The addresses that our program accesses are virtual memory 
address and the MMU needs to map those addresses to actual 
physical address in the main memory to access them.

CPU MMU

L1 I 
Cache

L1 D 
Cache

L2
Cache

Main
Memory

3



Inside the MMU
• Virtual addresses are translated to physical addresses at page 

level granularity.
• There are multiple different organization on how this mapping 

(page table) is stored.
• Radix tables
• Hash based

• Needs to be performed on every memory access, so needs to be 
fast. How do CPU designers make things fast? Caching.

• The structure that caches these translations is called TLB or 
translation lookaside buffer.

4



• TLB entries are a scarce resource especially in large-scale 
multiprocess applications.

• TLB misses together with I-cache misses means that often in large 
scale application it’s a challenge to keep the CPU fed with 
instructions.

• In most programs there are certain sections of code that are 
executed more frequently (called hot) than others (called cold)

• We can reduce the effective working set of the program code by 
arranging these hot section in a way that minimizes the number of 
memory pages they span, 

• This effectively reduces the number of entries the TLB must cache 
simultaneously to keep the CPU fed with instructions.

5



Example
• Let’s assume our program spans 2 memory pages.

Unoptimized organization Optimized organization

6



RISC ISAs have another problem.
• Since each instruction is fixed length, there are only so many bits 

left to store the offset of the branch target.
• This means the instruction sequence for calling your function 

depends on how far away in your memory space is the callee from 
the caller.

• If there are a lot of trampolines on your hot path, they can take up 
a non-trivial proportion of execution time.

7



Existing alternative solution
• llvm-BOLT
• BOLT is a binary optimizer that takes in a sample-based profile of the 

application and then optimizes a program binary based on that profile.
• Performs function ordering but also a bunch of other optimizations.
• Currently only supports x86 and AArch64 platforms.
• Let’s see an example workflow of optimizing a binary with BOLT.

8



Example BOLT workflow

main.c

hello.c

clang

clang

main.instr.o

hello.instr.o

Linker prog.instr.out

prog.instr.outTraining 
workload

Output

Prog.profile

9



main.c

hello.c

clang

clang

main.opt.o

hello.opt.o

Linker prog.opt.outProg.profile

10



prog.opt.outDeployment
Workload

Sample Profiler

Deployment
Output

Prog.sample.prof

11



Prog.sample.prof

prog.opt.out

LLVM BOLT prog.bolt.out

12



• That extra profiling and another optimization step adds a lot of 
complexity to the build and deployment pipeline.

• This extra complexity is not without benefits for BOLT’s design 
goals.

• But if we are just focused on binary layout improvement through 
function placement then there is a simpler approach.

• What information do we actually need to come up with a better 
function ordering?

13



Function ordering problem formulation
• A call graph for an application is a directed weighted graph where 

the nodes represent functions in the application and the edges 
represent the caller-callee relationships. 

• The weight of a given edge represents how many times that 
particular caller-callee relationship was exercised during a 
dynamic execution of a program.

• Note that the call graph depends on the dynamic execution of the 
program. In other words, the same program can have two different 
call graphs depending on program input.

14



Example call graph

main

hello

world

10

5

15



What now?
• Once we have the call graph, the problem of choosing a function 

ordering is can be formulated as choosing a sequence of nodes 
that minimizes some cost or using some other heuristic to choose 
which nodes should be adjacent in the ordering that we produce.

• For the purposes of this talk, we treat the actual algorithm as a 
black box. For more details on the actual algorithm, see the 
following papers.

• Pettis K., Hansen R.C., “Profile guided code positioning”, SIGPLAN 
Not. 25 (6) (1990) 16–27,.

• G. Ottoni and B. Maher, "Optimizing function placement for large-
scale data-center applications," 2017 IEEE/ACM International 
Symposium on Code Generation and Optimization (CGO), Austin, 
TX, USA, 2017, pp. 233-244, doi: 10.1109/CGO.2017.7863743.

16



Looking back at the PGO workflow

main.c

hello.c

clang

clang

main.opt.o

hello.opt.o

Linker prog.opt.outProg.profile

At this stage we have the information 
we need to produce a call graph.

Almost…

17



• Since we know how many times a given basic block is executed, if 
that BB contains a call instruction, we know how many times that 
call instruction was executed. 

• The sum of execution counts of all call instructions in a given 
function to a callee is the weight of the edge from that function to 
the callee.

• The problem once again is that we only see a subset of a program 
at a time, therefore we never see the call graph for the entire 
program at once during the compilation process.

18



Solution
• We need to gather “partial call graphs” during compile steps and 

then later combine them all together to form a single call graph for 
the entire program.

• To achieve this, we embed the partial call graph from each 
compilation unit into its object file by serializing it writing it to the 
comment section of the produced XCOFF file.

• Then just before we link the binary together, we read in all the 
object files, extract the partial call graphs, resolve all the 
references and then pass our global call graph to our algorithm to 
get a function ordering then use it to choose a better layout.

19



Partial call graph example
• Let’s say we have the following two compilation units in our 

program.

20



Partial call graph for main.c

main

mess
age

greet
ing

10

10

21



Partial call graph for hello.c

greet
ing

Inde
nt

10

22



• We still need the first profile gathering step.

main.c

hello.c

clang

clang

main.instr.o

hello.instr.o

Linker prog.instr.out

prog.instr.outTraining 
workload

Output

Prog.profile

Workflow example
23



main.c

hello.c

clang

clang

main.opt.o

hello.opt.o

Prog.profile llvm-ordergen

24



Inside llvm-ordergen

main

mess
age

greet
ing

10

10

greet
ing

Inde
nt

10

The task that llvm-ordergen must do at this point is pretty similar to that of a linker,
 i.e. symbol resolution

25



Getting symbol resolution info from the linker

main.opt.o

hello.opt.o

Linker prog.symres.info

26



Inside llvm-ordergen

main mess
age

greet
ing

1010 greet
ing

Inde
nt

10

27



main mess
age

greet
ing

Inde
nt

10 10 10

prog.symres.info

llvm-ordergen

28



main.opt.o

hello.opt.o

llvm-ordergen prog.ordering

29



main.opt.o

hello.opt.o

Linkerprog.ordering prog.ordered.out

30



main.opt.o

hello.opt.o

Linker prog.symres.info ordergen prog.ordering Linker prog

31



What does this solution give us?
• No extra profile step, we reuse the same profile information as a 

regular clang PGO build.
• The compiler driver can co-ordinate the order file generation 

process, making the feature completely transparent to the 
user/build system provided the program is linked through the 
compiler.

• For the user, the process is as simple as enabling a compiler flag.

32



• Baseline: O3 with PGO
• Training workload: insensitive
• 3.6% performance improvement over the baseline.
• Improvements in the compiler frontend.

Performance Evaluation
33



Thank you.

Dhanrajbir Singh Hira
University of Alberta

34


	Slide 1: Bringing Profile Guided Function Placement to AIX
	Slide 2
	Slide 3
	Slide 4: Inside the MMU
	Slide 5
	Slide 6: Example
	Slide 7: RISC ISAs have another problem.
	Slide 8: Existing alternative solution
	Slide 9: Example BOLT workflow
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Function ordering problem formulation
	Slide 15: Example call graph
	Slide 16: What now?
	Slide 17: Looking back at the PGO workflow
	Slide 18
	Slide 19: Solution
	Slide 20: Partial call graph example
	Slide 21: Partial call graph for main.c
	Slide 22: Partial call graph for hello.c
	Slide 23: Workflow example
	Slide 24
	Slide 25: Inside llvm-ordergen
	Slide 26: Getting symbol resolution info from the linker
	Slide 27: Inside llvm-ordergen
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: What does this solution give us?
	Slide 33: Performance Evaluation
	Slide 34: Thank you.

