
Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 1

Improving Inlining Decisions
in the Open Research

Compiler

Peng Zhao
José Nelson Amaral

University of Alberta

Edmonton, AB, Canada

http://www.cs.ualberta.ca/~amaral
amaral@cs.ualberta.ca

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 2

Yet Another Paper on Inlining?

What is new?

Adapt Decisions to Benchmark Sizes
Aggressive for small benchmarks, careful for large ones.

Use Cycle Density to Control Code Bloat
A correction to the temperature heuristic in ORC.

What is left to do?
Investigated why remainder procedures not inlined.
Next: Partial Inlining and Recursive Procedure Inlining.

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 3

Open Research Compiler

Pro64

2000
Open Source

Osprey

1999-2000
Itanium I

1984-88

Cydrome

Jan 2002
Perform. Code Gen.

ORC 1.0

Ragnarok

1989-1995
PRE, 64 bits

Mongoose

1995-1998
SSA, LNO, IPA

ORC 2.1

July 2003

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 4

Why inline?

Eliminate function call overhead
Building stack frame, passing parameters, ...

Increase scope for code analysis
Better identification for loop optimizations

Improve code placement
Affine code can be placed nearby

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 5

Why not to inline?

Code bloat
Negative instruction cache effects

Compiler resources
Some analysis may choke on large procedures

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 6

Original ORC Inlining Heuristic

p

qEi(p,q)

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 7

Original ORC Inlining Heuristic

p

qEi(p,q)

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 8

Original ORC Inlining Heuristic

Ei(p,q)

p

q

Temperature[Ei(p,q)] = ?

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 9

Original ORC Inlining Heuristic

Ei(p,q)

p

q

cycle_ratio[Ei(p,q)] =
call_freq[Ei(p,q)]

call_freq(q)

cycle_count(q)

Total_cycle_count
×

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 10

Original ORC Inlining Heuristic

Ei(p,q)

p

q

size_ratio(q) =
size(q)

Total_application_size

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 11

Original ORC Inlining Heuristic

size_ratio(q) =
size(q)

Total_application_size

cycle_ratio[Ei(p,q)] =
call_freq[Ei(p,q)]

call_freq(q)

cycle_count(q)

Total_cycle_count
×

Temperature[Ei(p,q)] =
cycle_ratio[Ei(p,q)]

size_ratio(q)

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 12

Original ORC Inlining Heuristic

size_ratio(q) =
size(q)

Total_application_size

cycle_ratio[Ei(p,q)] =
call_freq[Ei(p,q)]

call_freq(q)

cycle_count(q)

Total_cycle_count
×

Temperature[Ei(p,q)] =
cycle_ratio[Ei(p,q)]

size_ratio(q)

Edges called often are hot. Good!

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 13

Original ORC Inlining Heuristic

size_ratio(q) =
size(q)

Total_application_size

cycle_ratio[Ei(p,q)] =
call_freq[Ei(p,q)]

call_freq(q)

cycle_count(q)

Total_cycle_count
×

Temperature[Ei(p,q)] =
cycle_ratio[Ei(p,q)]

size_ratio(q)

Functions that execute longer are hot. Good!

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 14

Original ORC Inlining Heuristic

size_ratio(q) =
size(q)

Total_application_size

cycle_ratio[Ei(p,q)] =
call_freq[Ei(p,q)]

call_freq(q)

cycle_count(q)

Total_cycle_count
×

Temperature[Ei(p,q)] =
cycle_ratio[Ei(p,q)]

size_ratio(q)

Even if they are not called often. Bad!

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 15

Original ORC Inlining Heuristic

size_ratio(q) =
size(q)

Total_application_size

cycle_ratio[Ei(p,q)] =
call_freq[Ei(p,q)]

call_freq(q)

cycle_count(q)

Total_cycle_count
×

Temperature[Ei(p,q)] =
cycle_ratio[Ei(p,q)]

size_ratio(q)

Small Code ==> small functions are cold. Bad!

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 16

Tempereature Distribution for
gcc

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 17

Temperature Distribution for
BZIP2

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 18

Adapting the ORC Heuristic to
Benchmark Size

Empirical classification of benchmarks
 (based on SPEC):

Small: < 10,000 AST Nodes

Large: > 250,000 AST Nodes

Medium: Anything in between

Temperature
Threshold

1

50

120

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 19

“ Heavy” Procedures

A procedure call that:
• is hot in the original ORC heuristic
• but that is not called often

must have high trip count loops.
We call these heavy procedures.

We introduce the cycle density heuristic
to fix the ORC inlining decisions for heavy
procedures.

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 20

Cycle Density

cycle_density(q) =
cycle_count(q)

frequency(q)

High cycle density indicates a heavy procedure.

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 21

Temp. × Cycle Density (BZIP2)

T
em

pe
ra

tu
re

 a
nd

 c
yc

le
 d

en
si

ty

+

+

+
+

+

+

+
++++

++

+

+

+
+
++

++

++ + + + +++++ ++ + + ++ ++ + + +++

+

+

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 22

Experimental Study

SPEC2000 benchmarks, except EON.

Runtime on an Itanium-I (733 MHz,
1 GB mem, RH-Linux 7.1)

Compilation on a dual Pentium III (600 MHz,
512 MB mem, RH-Linux 7.2)

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 23

Average Performance
Improvement on SPEC2000

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 24

Inlining Speedup

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 25

Inlining Speedup

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 26

Effect of Cycle Density
on Code Size

0.0

0.5

1.0

1.5

Normal.
Average

Code Size

Code Size Variation

Add. Code 0.219 0.148

No Inline 1.0 1.0

Adaptive Adap+Density

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 27

Effect of Cycle Density
on Compilation Time

0.0

0.5

1.0

1.5

Normal.
Average
Compile

Time

Compilation Time Variation

Add. Comp. Time 0.343 0.24

No Inline 1.0 1.0

Adaptive Adap+Density

Compiler-Driven Performance,

CASCON, Markham, Oct. 2003 28

Can We Inline Further?

