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Yet Another Paper on Inlining?

What is new?

Adapt Decisions to Benchmark Sizes
Aggressive for small benchmarks, careful for large ones.

Use Cycle Density to Control Code Bloat
A correction to the temperature heuristic in ORC.

What is left to do?
Investigated why remainder procedures not inlined.
Next: Partial Inlining and Recursive Procedure Inlining.
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Open Research Compiler
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Why inline?

Eliminate function call overhead
Building stack frame, passing parameters, ...

Increase scope for code analysis
Better identification for loop optimizations

Improve code placement
Affine code can be placed nearby
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Why not to inline?

Code bloat
Negative instruction cache effects

Compiler resources
Some analysis may choke on large procedures
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Original ORC Inlining Heuristic
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Original ORC Inlining Heuristic

Ei(p,q)

p

q

Temperature[Ei(p,q)] = ?
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Original ORC Inlining Heuristic

Ei(p,q)
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cycle_ratio[Ei(p,q)] = 
call_freq[Ei(p,q)]
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Total_cycle_count
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Original ORC Inlining Heuristic

Ei(p,q)
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size_ratio(q) = 
size(q)

Total_application_size
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Original ORC Inlining Heuristic
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Original ORC Inlining Heuristic
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Edges called often are hot.  Good!
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Original ORC Inlining Heuristic

size_ratio(q) = 
size(q)

Total_application_size

cycle_ratio[Ei(p,q)] = 
call_freq[Ei(p,q)]

call_freq(q)

cycle_count(q)

Total_cycle_count
×

Temperature[Ei(p,q)] = 
cycle_ratio[Ei(p,q)]

size_ratio(q)

Functions that execute longer are hot.  Good!
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Original ORC Inlining Heuristic

size_ratio(q) = 
size(q)

Total_application_size

cycle_ratio[Ei(p,q)] = 
call_freq[Ei(p,q)]

call_freq(q)

cycle_count(q)

Total_cycle_count
×

Temperature[Ei(p,q)] = 
cycle_ratio[Ei(p,q)]

size_ratio(q)

Even if they are not called often.  Bad!



Compiler-Driven Performance, 

CASCON, Markham, Oct. 2003 15

Original ORC Inlining Heuristic

size_ratio(q) = 
size(q)

Total_application_size

cycle_ratio[Ei(p,q)] = 
call_freq[Ei(p,q)]

call_freq(q)

cycle_count(q)

Total_cycle_count
×

Temperature[Ei(p,q)] = 
cycle_ratio[Ei(p,q)]

size_ratio(q)

Small Code ==> small functions are cold.  Bad!
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Tempereature Distribution for 
gcc
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Temperature Distribution for 
BZIP2
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Adapting the ORC Heuristic to 
Benchmark Size

Empirical classification of benchmarks 
    (based on SPEC):

Small: < 10,000 AST Nodes

Large: > 250,000 AST Nodes

Medium: Anything in between

Temperature
Threshold

1

50

120
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“ Heavy”  Procedures

A procedure call that:
•  is hot in the original ORC heuristic
•  but that is not called often

must have high trip count loops.
We call these heavy procedures.

We introduce the cycle density heuristic
to fix the ORC inlining decisions for heavy
procedures.
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Cycle Density

cycle_density(q) = 
cycle_count(q)

frequency(q)

High cycle density indicates a heavy procedure.
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Temp. × Cycle Density (BZIP2)
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Experimental Study

SPEC2000 benchmarks, except EON.

Runtime on an Itanium-I (733 MHz, 
1 GB mem, RH-Linux 7.1)

Compilation on a dual Pentium III (600 MHz, 
512 MB mem, RH-Linux 7.2)
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Average Performance 
Improvement on SPEC2000
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Inlining Speedup



Compiler-Driven Performance, 

CASCON, Markham, Oct. 2003 25

Inlining Speedup
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Effect of Cycle Density
on Code Size
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Code Size

Code Size Variation

Add. Code 0.219 0.148

No Inline 1.0 1.0

Adaptive Adap+Density
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Effect of Cycle Density
on Compilation Time
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Compilation Time Variation

Add. Comp. Time 0.343 0.24

No Inline 1.0 1.0

Adaptive Adap+Density
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Can We Inline Further?


