
1

Future Challenges in
Dynamic Interprocedural

Analysis and Optimization

Vivek Sarkar
IBM T.J. Watson Research

Center
vsarkar@us.ibm.com

2

Outline

1. Motivation
2. Dynamic Optimistic Interprocedural Type

Analysis (DOIT)
3. Immutability Analysis Opportunities for

Dynamic IPA
4. Future Challenges

3

Acknowledgments / References

• “ Dynamic Optimistic Interprocedural Analysis: A
Framework and an Application.” , OOPSLA 2001
conference

• “ Immutability Specification and its Applications” ,
I. Pechtchanski, V. Sarkar, JGI 2002 conference,
CPE 2003 journal

• Discussions with Jikes RVM team members on
interprocedural extensions to type analysis,
load/store elimination, and register allocation

4

Motivation

• Interprocedural analysis (IPA) is essential for compiler-
driven performance
• especially when optimizing object-oriented languages

• Static IPA optimizations:
• limited precision due to impact of methods that may not be executed

• scalability limitations in analyzing static “ whole program”

• Dynamic intra-procedural optimizations:
• Significant advances, with inlining, to address interprocedural

optimization opportunities

• reaching point of diminishing returns

• Dynamic IPA:
• Opportunity to get best of both worlds

5

• supports dynamic class loading, adaptive
optimization, optimistic assumptions about
unanalyzed code

Dynamic Interprocedural Analysis Scenario

VM
Startu
p

First execution
of M i

(unoptimized)

New
classes

get loaded

Method Mk (re)

compiled
with optimization

Use IPA information
optimistically

Register verification
requests for new

methods

Collect/augm
ent

IPA
information

Initialize
Analysis

t

6

• Support for invalidation is necessary, to handle
case when optimistic assumption proves to be
incorrect

Invalidation Scenario

Method Mk (re)

compiled
with optimization

Use IPA information,
making optimistic

assumptions

New
classes

get loaded

Analyze Mx; Mx

violates
assumptions for

M k

Invalidate
optimized

compilation of
M k

tFirst execution
of new method

M x

(unoptimized)

7

Static vs. Dynamic Application Characteristics:
(Number of Methods)

247

852

237

1362

472 376 505

6548

2636
2872

74
417

72

684

192 142 193

1704

321

847

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

compress

jess
db javac

mpegaudio

mtrt
jack

HyperJ

DOMCount

Lib. Classes

N
um

be
r

of
 m

et
ho

ds

Semi-static (all methods in dynamically loaded classes) Dynamic

Ratio of Dynamic methods to Semi-static methods ~ 12% - 50%

8

Static vs. Dynamic Application Characteristics:

(Number of Fields containing object references)

56
108

40

273

168

76
112

1140

740

412

46
94

33

212
153

67
103

786

336

129

 0

 200

 400

 600

 800

 1000

 1200

compress

jess
db javac

mpegaudio

mtrt
jack

HyperJ

DOMCount

Lib. Classes

N
um

be
r

of
 fi

el
ds

Semi-static (fields in dynamically loaded classes) Dynamic

Ratio of Dynamic fields to Semi-static fields ~ 31% - 92%

9

Outline

1. Motivation
2. Dynamic Optimistic Interprocedural Type

Analysis (DOIT)
3. Immutability Analysis Opportunities for

Dynamic IPA
4. Future Challenges

10

DOIT Phases

• Initialization

• Analysis
• analyzes each method on first invocation

• incorporates method summary into Value Graph

• Optimization
• traverses Value Graph to identify types

• uses type information in optimization

• registers verification actions for type info used

• registers invalidations for optimized method

11

Value Graph

• Node n denotes a set of types, (n)

• Location nodes
• Local variable

• Field

• Array element

• Constant type e.g., T1

• Edges represent flow of types
• graph may be cyclic

• Operator nodes
• Closure: (*)

• Subscript: ([])

• Union: ()

• Intersection: ()

12

Local Value Graph Example

B1.1: getstatic A.a

B1.2: astore k
...

B2.1: invokestatic
M

B2.2: astore k
...

B3.1: getstatic A.a

B3.2: iconst_0

B3.3: aload k

B3.4: aastore[]T1

A.a

(A.a) k*

T1 M();
...

S1: k = A.a;
...

S2: k = M();
...

S3: A.a[0]=k;

13

Computing Local and Global Value
Graphs

• Local Value Graph
• Abstract interpretation of bytecodes

• propagates types symbolically through stack

• Represents type flow in method

• Global Value Graph
• Local Value Graph is compressed after method
is analyzed

• Local variable nodes can be bypassed and removed

• Local Value Graph is spliced into Global Value
Graph

14

Method M1

Method M2

T1 (A.a)

[]

k*

Global Type
Constants

Global Value Graph

A.a

Global
Locations

Method
Summaries

l

*

Object[]

T1[]

*T0[]

15
······

Computing Type Information

• For use in optimization

• Determine the type of a given location
• on-demand traversal of the Value Graph

• reverse-DFS starting at location

• types are propagated along the edges

[]T1 A.a (A.a)

 k*

T1[] T1* T1*

{T1[], T1*}

T1 T1[] {T1[], T1*}

T1*

T1[]

···

16

Experimental Setup

• Prototyped using Jikes RVM
• type-based optimizations of calls

• recompile after first run at highest opt level

• Benchmarks:
• SPECjvm98, Hyper/J, Xerces (DOMCount)

• Measurements
• Dynamic counts of virtual and interface calls

• Execution times

• Value Graph sizes and traversal statistics

• Value Graph construction times

17

Experimental Results
Impact of DOIT Analysis on Interface Calls
 4.8e2 2.8e6 6.0e7 1.4e7 7.9e5 2.4e2 1.9e7 4.7e7 7.2e6 1.7e7

P O P O P O P O P O P O P O P O P O P O
0%

20%

40%

60%

80%

100%

com
press

jess
db javac

m
pegaudio

m
trt

jack
HyperJ

DOMCount

Average

%
 o

f
al

l i
n

te
rf

ac
e

in
vo

ca
ti

o
n

s

Virtualized and unguarded
Virtualized and guarded
Static guarded inline
Virtualized
Interface dispatch

Pessimistic (CHA)
Optimistic (DOIT)

P _
O ^

18

Experimental Results
Speedup from using interprocedural type info

7.5%

3.6%

0.3% 0.5%
0.8%

2.4%

3.4%

1.6%

21.0s 8.2s 21.3s 12.2s 4.8s 15.8s 3.1s 2.4s 12.2s21.0s

0%

1%

2%

3%

4%

5%

6%

7%

8%

com
press

jess
db javac

m
pegaudio

m
trt

jack
HyperJ

DOMCount

Average

%
 s

p
ee

d
u
p

Speedup

19

Experimental Results
Value Graph Traversal Statistics

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

com
press

jess
db javac

m
pegaudio

m
trt

jack
HyperJ

DOMCount

A
ve

ra
g

e
n

o
d

es
/e

d
g

es
 v

is
it

ed

Nodes
Edges

20

Experimental Results
Analysis Rates (bytecode bytes/ms)

2.53× 4.49× 2.81× 4.87× 2.80× 5.40× 4.20× 3.53×

0

100

200

300

400

500

600

700

800

900

1000

com
press

jess
db javac

m
pegaudio

m
trt

jack
Average

A
n

al
ys

is
 r

at
e

(b
cb

/m
s)

Baseline Compiler
DOIT Analysis

21

Outline

1. Motivation
2. Dynamic Optimistic Interprocedural Type

Analysis (DOIT)
3. Immutability Analysis Opportunities for

Dynamic IPA
4. Future Challenges

22

Immutability Analysis:
Motivation

• Immutability information can be used interprocedurally to
enhance:
• Load elimination and register allocation

• Load of immutable value cannot be changed across a procedure call

• Array dependence analysis, pointer alias analysis
• Target of a store instruction cannot be aliased with target of a load

instruction

• Value Numbering / CSE / PRE
• Load of an immutable value can be treated similarly to read of an

unmodified local variable to enable optimization of derived
expressions (including null pointer, type checks, array bounds checks)

• Data transformations
• object inlining, splitting, replication, caching

• Parallelization
• Immutable locations cannot interfere with parallelization

23

Immutability Properties

• Dimensions of Immutability:
• Lifetime

• e.g., whole program, after a certain point, in method call

• Reachability
• e.g., reference, object, full reachability, arbitrary shape

• Context
• e.g., all instances, instances within a method, etc.

• Existing language mechanisms provide limited support for these
dimensions

• e.g., Java final, C++ const

• How can immutability properties be obtained?
1. Specified by user
2. Inferred (optimistically) by dynamic optimization system

 Opportunity for Dynamic IPA

24

tES bar() bar()foo()

Dimensions: Lifetime

 whole program

 after a certain program point
• e.g., after an object has been initialized

 in a method call

 etc.

A
B
C

25

Dimensions: Reachability

 reference (=final)

 object

 full reachability

 arbitrary shape

26

Simple Example

class MyString {
/* assume deep immutability for S*/
final char[] S;
final int count;
. . .
int foo() {
int c1 = S[0];
bar();
int c2 = S[0]; // c2 must be same as c1
return c1 + c2;

}
}

27

Limit Study: Immutability Ratio

• Define Immutability Ratio as

• IR actual
• Obtained by counting last write separately for
each dynamic object instance

• IR uniform
• Obtained by assuming that writes are uniformly
distributed among reads

• Hypothetical “ expected” value of IR

IR =
of read operations after last write

total # of read operations

28

Limit Study: Experimental Setup

• Instrument Jikes RVM to generate traces
• all read and write accesses

• Benchmarks
• Jikes RVM regression tests

• bytecodeTests, reflect, threads, utf8, opttests

• CaffeineMark

• SPECjvm98 (input size = 10%)
• _200_check, _202_jess, _209_db, _213_javac

• Xerces (DomCount)

• Goal: measure Immutability Ratio for
benchmarks

29

Immutability Ratios

30

Limit Study: Abstract Locations

• Abstract location = static representative for set of
dynamic locations
• Each declared field is a distinct abstract location
• Each declared array type is a distinct abstract location

• Coarse-grained immutability: measured by
merging all dynamic instances of the same
abstract location

• Goals:
• Measure gap between fine-grained and coarse-grained

immutability
• Determine how immutable reads are distributed across

abstract locations

31

Distribution of immutable reads across
abstract locations: _202_jess

32

Distribution of immutable reads across
abstract locations: _209_db

33

Distribution of immutable reads across
abstract locations: _213_javac

34

Distribution of immutable reads across
abstract locations: DOMcount

35

Invalidation Issues in Dynamic IPA

• Correctness: must always be possible to
undo the optimization
• need recovery procedure; may limit scope of
optimization

• Efficiency: cost; depends on
• what optimization is performed, e.g.,

• preexistence based inlining only needs recompilation
• dead store elimination needs on-stack replacement
• object inlining needs data structure rewriting

• when optimization is performed
• delaying optimization may avoid need for invalidation

36

Integrating Dynamic IPA into
Adaptive Optimization Framework

• Invalidation cost supplied to adaptive
system
• which uses cost-benefit model

• Optimization considered worthwhile if cost
of invalidation less than potential benefit
• invalidation cost may vary dynamically

• Optimizations may be more profitable for
long-running programs

37

Adaptive Optimization System w/
Adaptive Inlining

Ins t all New Cod e

AOS
Database

Compilation Queue

 Event Queue

Controller

Decay
Organizer

OPT Compiler

Compilation
Thread

Executing
Code

Hot Method
Organizer

Method
Samples

T ake S ample

Call Edge
Samples

Inlining Rules

Dynamic Call
Graph

DCG
Organizer

Inlining
Organizer

Method, % Hot, Boost Factor

38

Outline

1. Motivation
2. Dynamic Optimistic Interprocedural Type

Analysis (DOIT)
3. Immutability Analysis Opportunities for

Dynamic IPA
4. Future Challenges

39

Future Challenges

• Integrating Dynamic IPA into Adaptive
Optimization and Invalidation

• Automatic inference of Dynamic IPA
properties of interest

• Application of Dynamic IPA to verification

• Refining granularity of Dynamic IPA from
methods to basic blocks

