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Motivation

• Interprocedural analysis (IPA) is essential for compiler-
driven performance
• especially when optimizing object-oriented languages

• Static IPA optimizations:
• limited precision due to impact of methods that may not be executed

• scalability limitations in analyzing static “ whole program”

• Dynamic intra-procedural optimizations: 
• Significant advances, with inlining, to address interprocedural 

optimization opportunities

• reaching point of diminishing returns

• Dynamic IPA:
• Opportunity to get best of both worlds
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• supports dynamic class loading, adaptive 
optimization, optimistic assumptions about 
unanalyzed code

Dynamic Interprocedural Analysis Scenario
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• Support for invalidation is necessary, to handle 
case when optimistic assumption proves to be 
incorrect

Invalidation Scenario
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Static vs. Dynamic Application Characteristics: 
(Number of Methods)
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Static vs. Dynamic Application Characteristics: 

(Number of Fields containing object references)
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DOIT Phases

• Initialization

• Analysis
• analyzes each method on first invocation

• incorporates method summary into Value Graph

• Optimization
• traverses Value Graph to identify types

• uses type information in optimization

• registers verification actions for type info used

• registers invalidations for optimized method
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Value Graph

• Node n denotes a set of types, (n)

• Location nodes
• Local variable

• Field

• Array element

• Constant type e.g., T1

• Edges represent flow of types
• graph may be cyclic

• Operator nodes
• Closure: ( * )

• Subscript: ( [ ] )

• Union: (  )

• Intersection: (  )
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Local Value Graph Example

B1.1: getstatic A.a

B1.2: astore k
...

B2.1: invokestatic 
M

B2.2: astore k
...

B3.1: getstatic A.a

B3.2: iconst_0

B3.3: aload k

B3.4: aastore[]T1



A.a

(A.a) k*

T1 M();
...

S1: k = A.a;
...

S2: k = M();
...

S3: A.a[0]=k;
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Computing Local and Global Value 
Graphs

• Local Value Graph
• Abstract interpretation of bytecodes

• propagates types symbolically through stack

• Represents type flow in method

• Global Value Graph
• Local Value Graph is compressed after method 
is analyzed

• Local variable nodes can be bypassed and removed

• Local Value Graph is spliced into Global Value 
Graph
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Computing Type Information

• For use in optimization

• Determine the type of a given location
• on-demand traversal of the Value Graph

• reverse-DFS starting at location

• types are propagated along the edges

[]T1 A.a (A.a)

 k*

T1[] T1* T1*

{T1[], T1*}

T1 T1[] {T1[], T1*}

T1*

T1[]

···
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Experimental Setup

• Prototyped using Jikes RVM
• type-based optimizations of calls

• recompile after first run at highest opt level

• Benchmarks:
• SPECjvm98, Hyper/J, Xerces (DOMCount)

• Measurements
• Dynamic counts of virtual and interface calls

• Execution times

• Value Graph sizes and traversal statistics

• Value Graph construction times
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Experimental Results
Impact of DOIT Analysis on Interface Calls
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Experimental Results
Speedup from using interprocedural type info
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Experimental Results
Value Graph Traversal Statistics
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Experimental Results
Analysis Rates (bytecode bytes/ms)
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Immutability Analysis: 
Motivation

• Immutability information can be used interprocedurally to 
enhance:
• Load elimination and register allocation

• Load of immutable value cannot be changed across a procedure call

• Array dependence analysis, pointer alias analysis
• Target of a store instruction cannot be aliased with target of a load 

instruction

• Value Numbering / CSE / PRE
• Load of an immutable value can be treated similarly to read of an 

unmodified local variable to enable optimization of derived 
expressions (including null pointer, type checks, array bounds checks)

• Data transformations
• object inlining, splitting, replication, caching

• Parallelization
• Immutable locations cannot interfere with parallelization



23

Immutability Properties

• Dimensions of Immutability:
• Lifetime

• e.g., whole program, after a certain point, in method call 

• Reachability
• e.g., reference, object, full reachability, arbitrary shape

• Context
• e.g., all instances, instances within a method, etc.

• Existing language mechanisms provide limited support for these 
dimensions 

• e.g., Java final, C++ const

• How can immutability properties be obtained?
1. Specified by user
2. Inferred (optimistically) by dynamic optimization system

 Opportunity for Dynamic IPA
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tES bar() bar()foo()

Dimensions: Lifetime

 whole program

 after a certain program point
• e.g., after an object has been initialized

 in a method call

 etc.

A
B
C
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Dimensions: Reachability

 reference (=final)

 object

 full reachability

 arbitrary shape
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Simple Example

class MyString {
/* assume deep immutability for S*/ 
final char[] S;
final int count;
. . .
int foo( ) {
int c1 = S[0];
bar();
int c2 = S[0]; // c2 must be same as c1
return c1 + c2;

}
}
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Limit Study: Immutability Ratio

• Define Immutability Ratio as

• IR actual
• Obtained by counting last write separately for 
each dynamic object instance

• IR uniform
• Obtained by assuming that writes are uniformly 
distributed among reads

• Hypothetical “ expected”  value of IR

IR =
# of read operations after last write

total # of read operations
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Limit Study: Experimental Setup

• Instrument Jikes RVM to generate traces
• all read and write accesses

• Benchmarks
• Jikes RVM regression tests

• bytecodeTests, reflect, threads, utf8, opttests

• CaffeineMark

• SPECjvm98 (input size = 10%)
• _200_check, _202_jess, _209_db, _213_javac

• Xerces (DomCount)

• Goal: measure Immutability Ratio for 
benchmarks
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Immutability Ratios
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Limit Study: Abstract Locations

• Abstract location = static representative for set of 
dynamic locations
• Each declared field is a distinct abstract location
• Each declared array type is a distinct abstract location

• Coarse-grained immutability: measured by 
merging all dynamic instances of the same 
abstract location

• Goals: 
• Measure gap between fine-grained and coarse-grained 

immutability
• Determine how immutable reads are distributed across 

abstract locations
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Distribution of immutable reads across 
abstract locations: _202_jess
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Distribution of immutable reads across 
abstract locations: _209_db
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Distribution of immutable reads across 
abstract locations: _213_javac
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Distribution of immutable reads across 
abstract locations: DOMcount
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Invalidation Issues in Dynamic IPA

• Correctness: must always be possible to 
undo the optimization
• need recovery procedure; may limit scope of 
optimization

• Efficiency: cost; depends on
• what optimization is performed, e.g.,

• preexistence based inlining only needs recompilation
• dead store elimination needs on-stack replacement
• object inlining needs data structure rewriting

• when optimization is performed
• delaying optimization may avoid need for invalidation
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Integrating Dynamic IPA into 
Adaptive Optimization Framework

• Invalidation cost supplied to adaptive 
system
• which uses cost-benefit model

• Optimization considered worthwhile if cost 
of invalidation less than potential benefit
• invalidation cost may vary dynamically

• Optimizations may be more profitable for 
long-running programs
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Adaptive Optimization System w/ 
Adaptive Inlining
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Future Challenges

• Integrating Dynamic IPA into Adaptive 
Optimization and Invalidation 

• Automatic inference of Dynamic IPA 
properties of interest

• Application of Dynamic IPA to verification

• Refining granularity of Dynamic IPA from 
methods to basic blocks


